Test Yourself 1.1

(1) $\mathrm{V}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
(2) $[\mathrm{G}]=\mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
(3) (a) $\varepsilon_{0}=\frac{1}{4 \pi} \frac{Q_{1} Q_{2}}{F r^{2}}$, so $\left[\varepsilon_{0}\right]=\frac{\left[Q_{1}\right]\left[Q_{2}\right]}{[F]\left[r^{2}\right]}=\frac{\mathrm{C} \times \mathrm{C}}{\mathrm{N} \times \mathrm{m}^{2}}=\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
(b) Using $\mathrm{C}=\mathrm{As}$ and $\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2},\left[\varepsilon_{0}\right]=\mathrm{kg}^{-1} \mathrm{~m}^{-3} \mathrm{~s}^{4} \mathrm{~A}^{2}$
(4) (a) $[h]=\mathrm{Js}$
(b) $[h]=\operatorname{kg~m} \mathrm{s}^{2}{ }^{-1}$
(5) $\left[\mu_{0}\right]=\mathrm{H} \mathrm{m}^{-1}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~A}^{-2}$, so $\mathrm{H}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
(6) $\mathrm{F}=[\mathrm{C}]=\mathrm{kg}^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{4} \mathrm{~A}^{2}$
(7) $2.5 \mathrm{M} \Omega\left[=2.5 \times 10^{6} \Omega\right]$
(8) $\left[\frac{1}{\varepsilon_{0} \mu_{0}}\right]=\frac{1}{\mathrm{~kg}^{-1} \mathrm{~m}^{-3} \mathrm{~s}^{4} \mathrm{~A}^{2} \times \mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~A}^{2}}=\mathrm{m}^{2} \mathrm{~s}^{-2}=\left[\begin{array}{ll}\mathrm{c}^{2}\end{array}\right] \quad$ QED
(9) (a) $[\sigma]=\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}$
(b) $[\sigma]=\mathrm{M} \mathrm{T}^{-3} \Theta^{-4}$

Note: L cancels out so [σ] does not depend on L
(10 $[W]=\mathrm{L} \Theta$
(11) $\Omega=[R]=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
(12) (a) $[c]=\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
(b) $[c]=\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
(13) $\mathrm{Ns}=\left(\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}\right) \times \mathrm{s}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
(4) Starting from the rhs and working in dimensions:
$[p \Delta V]=\left[\frac{F}{A}\right] \times[\Delta V]=\frac{\mathrm{M} \mathrm{L} \mathrm{T}^{-2}}{\mathrm{~L}^{2}} \times \mathrm{L}^{3}=\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}=[W] \quad$ QED
(15) Working in units
$\left[p^{2} c^{2}\right]=\mathrm{N}^{2} \mathrm{~s}^{2} \times \mathrm{m}^{2} \mathrm{~s}^{-2}=\mathrm{N}^{2} \mathrm{~m}^{2}$
$\left[m^{2} c^{4}\right]=\mathrm{kg}^{2} \mathrm{~m}^{4} \mathrm{~s}^{-4}=\left(\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}\right)^{2} \mathrm{~m}^{2}=\mathrm{N}^{2} \mathrm{~m}^{2}$
\therefore The right-hand side is homogeneous.
$\left[E^{2}\right]=\mathrm{J}^{2}=(\mathrm{N} \mathrm{m})^{2}=\mathrm{N}^{2} \mathrm{~m}^{2}$
So the two sides have the same units, i.e the equation is homogeneous.
(16) Working in dimensions:

Dimensions of the right side $=[n A v e]=\mathrm{L}^{-3} \mathrm{~L}^{2}\left(\mathrm{~L} \mathrm{~T}^{-1}\right)(\mathrm{IT})=\mathrm{I}$ = dimensions of the left side QED
(17) $6.4 \mu \mathrm{~m} \mathrm{~s}^{-1}$
(18) If $E_{\mathrm{k} \text { max }}$ is expressed in J then the units of both terms on the right must be J, i.e. $[\phi]=\mathrm{J}$.
If $E_{\mathrm{k} \text { max }}$ is expressed in eV then $[\phi]=\mathrm{eV}$.
(19) Working in dimensions: $[p]=\left[\frac{F}{A}\right]=\mathrm{M} \mathrm{T} \mathrm{T}^{-2} \mathrm{~L}^{-2}=\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}$ $\left[\frac{1}{3} \rho c^{2}\right]=\mathrm{ML}^{-3}\left(\mathrm{~L} \mathrm{~T}^{-1}\right)^{2}=\mathrm{M}^{-1} \mathrm{~T}^{-2}$. The two sides have the same dimensions, hence the equation is homogeneous.
(20) Working in units: $\left[\frac{h}{\lambda}\right]=\frac{\mathrm{Js}}{\mathrm{m}}=\frac{\mathrm{N} \mathrm{m} \mathrm{s}}{\mathrm{m}}=\mathrm{Ns}=[p]$, so the equation is homogeneous.
(21) Working in dimensions: $[p]=\mathrm{ML}^{-1} \mathrm{~T}^{-2} ;[\rho]=\mathrm{M}^{-3}$;
$\therefore \quad\left[\sqrt{\frac{\gamma p}{\rho}}\right]=\sqrt{\mathrm{L}^{2} \mathrm{~T}^{-2}}=\mathrm{L} \mathrm{T}^{-1}$
$[c]=\mathrm{LT}^{-1}$, so the two sides have the same dimensions, i.e, the equation is homogeneous.
(22) Working in units: From Q2, $[G]=\mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}$.
$\therefore\left[-\frac{G M_{1} M_{2}}{R}\right]=\frac{\mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg} \mathrm{~kg}}{\mathrm{~m}}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}=[E]$
The two sides have the same dimensions, i.e. the equation is homogeneous.
23) $a=\frac{1}{2} ; b=-\frac{1}{2}$, i.e. $v=c \sqrt{\frac{K}{\rho}}$. Compare this with Q21.
(44) $a=b=-\frac{1}{2} ; c=\frac{3}{2}$, i.e. $T=k \sqrt{\frac{r^{3}}{G M}}$. Compare this with Kepler's
3rd law. 3rd law.
(25) $x=z=\frac{1}{2} ; y=-\frac{1}{2}$, i.e. $c=k \sqrt{\frac{T l}{m}}$. In fact it is usually written $c=\sqrt{\frac{T}{\mu}}$, where μ is the mass per unit length of the wire. The dimensionless constant $k=1$.

Test Yourself 2.1

1	23	2	-11	3	16	4	52	5	306
6	21000	1	600	8	42	(9)	520	(10)	264
(11)	75	(12)	40	(13)	-3	(14)	5	(15)	3.3
110	6	(1)	0.20	(18)	-0.5	(19)	± 12	20	± 6
(21)	2	(22)	-2.17	23	± 44.3	(24)	1.25	25	8

Test Yourself 2.2

(1) $m=\frac{E}{\mathrm{c}^{2}}$
(2) $R=\frac{V^{2}}{P}$
(3) $\rho=\frac{R A}{l}$
(4) $f=\frac{c}{\lambda}$
(5) $r=\sqrt{\frac{I}{4 \pi \sigma T^{4}}}$ or $\frac{1}{T^{2}} \sqrt{\frac{I}{4 \pi \sigma}}$ etc.
(6) $c=\sqrt{\frac{3 p}{\rho}}$
(7) $t=\frac{v-u}{a}$
(8) $u=\sqrt{v^{2}-2 a s}$
(9) $t=\frac{2 s}{u+v}$
(10) $v=\frac{I}{n A e}$
(11) $x=\sqrt{\frac{2 E}{k}}$
(12) $g=\frac{4 \pi^{2} l}{T^{2}}$
(1) $v=\sqrt{2 g h}$
(14) $m=\frac{F t}{v-u}$
(15) $v=\frac{s-\frac{1}{2} a t^{2}}{t}$ or $\frac{s}{t}-\frac{1}{2} a t$
(16) $h=\frac{E_{\mathrm{k} \max }+\phi}{f}$
(1) $M_{2}=\frac{F r^{2}}{G M_{1}}$
(18) $M=\frac{4 \pi^{2} a^{3}}{G T^{2}}$
(1) $X=\sqrt{Z^{2}-R^{2}}$
(21) $\beta=\sqrt{1-\frac{\mathrm{m}_{0}{ }^{2}}{m^{2}}}$
(21) $\mathrm{C}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$ or $\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}$
(22) $r=\frac{E R}{V}-R$ or $R\left(\frac{E}{V}-1\right)$
(3) $M_{1}=\frac{M_{2} d}{r_{1}}-M_{2}$ or $M_{2}\left(\frac{d}{r_{1}}-1\right)$
(24)
$M_{2}=\frac{M_{1}}{\left(\frac{d}{r_{1}}-1\right)}$ or $\frac{r_{1} M_{1}}{d-r_{1}}$
(25) $M_{1}=\frac{4 \pi^{2} d^{3}}{T^{2} G}-M_{2}$

Test Yourself 2.3

(1) $3 x+6$
(2) $20 x+24$
(4) $20+10 a+15 b$
(5) $x y-2 x+3 y-6$
(3) $a-3$
(7) $x^{2}+10 x+25$
(8) $4-4 y+y^{2}$
(6) $x^{2}-4 y^{2}$
(1) $25 a^{2}-60 a b+36 b^{2}$
(1) $a x-a b$
(B) $x^{2}-a^{2}$
(15) $z^{2}+b^{2}$
(1) $z^{2}+b^{2}$
(B) $t^{4}+2 t^{2}+1$
(1) $t^{4}-1$
(9) $2 p^{2}+p q-3 q^{2}$
(1) $-9+6 x-x^{2}$
(4) $x^{2}-4 a x+4 a^{2}$
(1) $4 z b$
(21) $t^{3}-2 t^{2}+t-2$
(21) $a^{3}+a^{2} b-a b^{2}-b^{3}$
(22) $a-b$
(24) 1
(23) $x-c$

Test Yourself 2.4

1	5.4	(2)	12.5	3	960
(4)	4.44	5	10	6	26.7
17	3.33	8	6.66	0	30
(1)	487	(1)	12	(1)	5.97×10^{24}
(1)	1.77×10^{-3}	(1)	1.96×10^{-5}	(15)	2.19
(1)	1245	(1)	314	(8)	1.89×10^{-7}
(1)	9.95×10^{26}	(12)	25.9	(2)	2.5
(12)	1.05	(3)	20	(24)	-24
(25)	1.98×10^{8}				

Test Yourself 3.1

(1) $x= \pm 4$
(2) $x= \pm 0.2$
(3) $t=0$ or 7
(4) $t=0$ or 30
(5) $t=0$ or 10.2
(6) $v= \pm 77.5$
(7) $v= \pm 3460$
(8) $x= \pm 7$
(9) $l-0.24= \pm 5.57, \therefore l=-5.13$ or 5.61
(1) $v+50= \pm 70.7, \therefore v=-120.7$ or 20.7
(1) $v-5= \pm 25.2, \therefore v=-20.2$ or 30.2
(1) $x=1$ or -2
(B) $x=-2.55$ or -0.79
(4) $t=0.76$ or 13.24
(15) $t=0.43$ or 11.8
(6) $t=6.95$ or 18.05
(1) $x= \pm 2 \mathrm{~m}$. NB. units!
(B) $v= \pm 1000 \mathrm{~m} \mathrm{~s}^{-1}$
(1) $t=2.04 \mathrm{~s}$. NB. The 0 solution is incorrect as the question asked for the time at which the stone returned to the ground.
(21) $57 \mathrm{~km} \mathrm{~s}^{-1}$.
(21) $t=1.36 \mathrm{~s}$ [ignore the negative root].
(2) 3500 m , ignoring the 0 root.
(23) Total distance from centre $=11530 \mathrm{~km} ; h=5150 \mathrm{~km}$.
(24) $20 \mathrm{~m} \mathrm{~s}^{-1}$.
(25) 2.70 s .

Test Yourself 3.2

(1) $a=3.5 ; u=10$
(2) $r=0.5 ; E=2.0$
(3) $a=1.5 ; u=4.0$
(4) $r=3.0 ; E=2.25$
(5) $a=4 ; v=24$
(6) $v=15 ; m=10$
(7) $k=25 ; l_{0}=0.2$
(8) $u= \pm 6 ; a=2$
(9) $a=0.75 \mathrm{~m} \mathrm{~s}^{-2} ; u=2.5 \mathrm{~m} \mathrm{~s}^{-1}$. [NB. units]
(1) $a=0.45 \mathrm{~m} \mathrm{~s}^{-2} ; u= \pm 6.78 \mathrm{~m} \mathrm{~s}^{-1}$.
(1) $r=1.5 \Omega ; E=6.0 \mathrm{~V}$
(1) $u=8 \mathrm{~m} \mathrm{~s}^{-1} ; a=3 \mathrm{~m} \mathrm{~s}^{-2}$.
(B) (a) $I_{1}=0.0978 \mathrm{~A} ; I_{2}=0.0434 \mathrm{~A}$
(b) $V_{2 \mathrm{~V}}=1.90 \mathrm{~V} ; V_{1.5 \mathrm{~V}}=1.41 \mathrm{~V}$
(c) $V_{10} \Omega=1.41 \mathrm{~V}=$ the pd across the 1.5 V cell as expected.
(4) $E=12 \mathrm{~V} ; r=12 \Omega$.
(15) Solution 1: $v_{1}=5 \mathrm{~m} \mathrm{~s}^{-1} ; v_{2}=8 \mathrm{~m} \mathrm{~s}^{-1}$. Solution 2: $v_{1}=7 \mathrm{~m} \mathrm{~s}^{-1}$; $v_{2}=4 \mathrm{~m} \mathrm{~s}^{-1}$
(16) $v_{1}=-\frac{4}{3} \mathrm{~m} \mathrm{~s}^{-1} ; v_{2}=\frac{8}{3} \mathrm{~m} \mathrm{~s}^{-1}$. The other solution with $v_{1}=4 \mathrm{~m} \mathrm{~s}^{-1}$ and $v_{2}=0$ represents a near miss!
(1) $R=6.85 \Omega ; \varepsilon=-0.023 \mathrm{~V}$
(B) $R=4.80 \Omega ; \varepsilon=0.013 \mathrm{~A}$
(1) $\mu=0.053 \mathrm{~kg} ; k=25.2 \mathrm{~N} \mathrm{~m}^{-1}$
(20) $h=2.531 \mathrm{~m} ; g=9.82 \mathrm{~m} \mathrm{~s}^{-2}$.
(21) $u=10 \mathrm{~m} \mathrm{~s}^{-1} ; a=2.0 \mathrm{~m} \mathrm{~s}^{-2}$.
(22) Solution 1: $u=15 \mathrm{~m} \mathrm{~s}^{-1} ; a=5 \mathrm{~m} \mathrm{~s}^{-2}$ (constant acceleration). Solution 2: $u=25 \mathrm{~m} \mathrm{~s}^{-1} ; a=0$ (constant velocity).
23) The valid solution is $r=2.0 \Omega, E=24 \mathrm{~V}$. The invalid solution has $r=-14 \Omega$!
(24) (a) $T_{1}{ }^{2}=4 \pi^{2} \frac{M_{1}}{k}$. With the additional mass, $T_{2}{ }^{2}=4 \pi^{2} \frac{M_{1}+M_{2}}{k}$ Subtracting gives $T_{2}{ }^{2}-T_{1}{ }^{2}=4 \pi^{2} \frac{M_{2}}{k}$ as required.
(b) $k=18.0 \mathrm{~N} \mathrm{~m}^{-1} ; M_{1}=0.200 \mathrm{~kg}$.

25 As in Q24, $T_{2}{ }^{2}-T_{1}{ }^{2}=4 \pi^{2} \frac{\Delta l}{g}$, where Δl is the change in
length $=-0.500 \mathrm{~m}$. $g=8.657 \mathrm{~m} \mathrm{~s}^{-2}$; original length $=2.500 \mathrm{~m}$

Test Yourself 3.3

(1) $\sqrt{(1+x)^{3}}=1+\frac{3}{2} x+\frac{\frac{3}{2} \times \frac{1}{2}}{2 \times 1} X^{2}+\frac{\frac{3}{2} \times \frac{1}{2} \times\left(-\frac{1}{2}\right)}{3 \times 2 \times 1} X^{3}+$ $\frac{\frac{3}{2} \times \frac{1}{2} \times\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{4 \times 3 \times 2 \times 1} X^{4}+\ldots$
$=1+\frac{3}{2} x+\frac{3}{8} x^{2}-\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\ldots$
(2) 1.837117
(3) $1 ; 0.75 ; 0.09375 ;-0.0078125 ; 0.0014648$
(4) $1 ; 1.75 ; 1.84375 ; 1.83594 ; 1.83740$ (a) 4.7%, (b) -0.4%
(5) Calculator value $=1.15369$

Terms: 1; 0.15; 0.00375; $-0.0000625 ; 0.000000234$
Totals: 1; 1.15; 1.15375; 1.15369; 1.15369
(a) 0.3%, (b) $4 \times 10^{-3} \%$
(6) 1.03
(7) 1.03
(8) 0.94
(9) 1.15
(10) 1.1
(11) $\sqrt{4.5}=\sqrt{4 \times(1+0.125)}=2 \times(1+0.125)^{0.5}$
$\therefore \sqrt{4.5}=2 \times\left(1+0.5 \times 0.125+\frac{0.5 \times(-0.5)}{2 \times 1} \times 0.125^{2}+\ldots\right)$
1 st order approximation $=2.125$
2 nd order approximation $=2.121 \ldots$
(12) $\sqrt[3]{1100}=10 \times \sqrt[3]{1+0.1}=10 \times(1+0.033 \ldots)=10.33 \ldots$ to 1 st order.
(13) $\frac{1}{\sqrt{1+x}}=(1+x)^{-0.5}$
$=1-0.5 x+\frac{-(0.5) \times(-1.5)}{2 \times 1} x^{2}+\frac{-(0.5) \times(-1.5) \times(-2.5)}{3 \times 2 \times 1} x^{3}+$

$$
+\frac{-(0.5) \times(-1.5) \times(-2.5) \times(-3.5)}{4 \times 3 \times 2 \times 1} x^{4}+\ldots
$$

$=1-0.5 x+0.375 x^{2}-0.3125 x^{3}+0.27344 x^{4}+\ldots$
(14) Terms to 4 th order: $1 ; 0.1 ; 0.015 ; 0.0025 ; 0.00044$

Partial sums: 1; 1.1; 1.115; 1.1175; 1.11795
Calculator value $=1.11803$
(15) To 1st order: $(1+x)^{n}-(1-x)^{n}=(1+n x \ldots)-(1-n x)$

$$
=1+n x-1+n x=2 n x
$$

(16) To 1st order: $\sqrt{1+x}-\sqrt{1-x}=1+\frac{1}{2} x-\left(1-\frac{1}{2} x\right)=x$.
(1) To 1st order: $(1+x)^{n}-\frac{1}{(1+x)^{n}}=(1+n x)-(1-n x)=2 n x$
(18) To 1st order: $(x+a)^{n}=x^{n}\left(1+\frac{a}{x}\right)^{n}=x^{n}\left(1+\frac{n a}{x}\right)=x^{n}+n a x^{n-1}$ This will be a good approximation if $n a \ll 1$
(19) To 1st order: $(x+a)^{n}-x^{n}=n a x^{n-1}$
(20) (a) $\mathrm{AC}=\sqrt{1.000^{2}+0.020^{2}}=\left(1+0.0004^{2}\right)$

$$
=1+\frac{1}{2} \times 0.0004-1.0002 \text { to } 1 \text { st order. }
$$

(b) $\mathrm{AC}=1.00019998$
(21) (a) $\mathrm{S}_{1} \mathrm{P}=\sqrt{1^{2}+0.00225^{2}}=\left(1+5.0625 \times 10^{-6}\right)^{0.5}$

$$
\begin{aligned}
&=1+2.53 \times 10^{-6} \mathrm{~m} \\
& \mathrm{~S}_{2} \mathrm{P}=\sqrt{1^{2}+0.00175^{2}}=\left(1+3.0625 \times 10^{-6}\right)^{0.5} \\
&=1+1.53 \times 10^{-6} \mathrm{~m} \\
& \therefore \mathrm{~S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=1.00 \times 10^{-6} \mathrm{~m} .
\end{aligned}
$$

(b) $1.00 \times 10^{-6} \mathrm{~m}$
(22) $\mathrm{S}_{1} \mathrm{P}=\sqrt{D^{2}+\left(x+\frac{d}{2}\right)^{2}}=D\left(1+\frac{\left(x+\frac{d}{2}\right)^{2}}{D^{2}}\right)^{\frac{1}{2}}=D\left(1+\frac{\left(x+\frac{d}{2}\right)^{2}}{2 D^{2}}\right)$ to 1st order.
$\mathrm{S}_{2} \mathrm{P}=\sqrt{D^{2}+\left(x-\frac{d}{2}\right)^{2}}=D\left(1+\frac{\left(x-\frac{d}{2}\right)^{2}}{D^{2}}\right)^{\frac{1}{2}}=D\left(1+\frac{\left(x-\frac{d}{2}\right)^{2}}{2 D^{2}}\right)$
to 1st order.
$\therefore \mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\frac{\left(x+\frac{d}{2}\right)^{2}}{2 D}-\frac{\left(x-\frac{d}{2}\right)^{2}}{2 D}=\frac{x^{2}+x d+\frac{d^{2}}{4}-\left(x^{2}-x d+\frac{d^{2}}{4}\right)}{2 D}=\frac{x d}{D}$
This leads on to the Young Fringes formula.
(23) To 2nd order:

$$
\begin{aligned}
\sqrt{1+x}+\frac{1}{\sqrt{1+x}} & =\left(1+\frac{1}{2} x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2 \times 1} x^{2}\right)+\left(1-\frac{1}{2} x+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2 \times 1} x^{2}\right) \\
& =1+\frac{1}{2} x-\frac{1}{8} x^{2}+1-\frac{1}{2} x+\frac{3}{8} x^{2} \\
& =2+\frac{1}{4} x^{2}
\end{aligned}
$$

(24) To 2nd order:
$(1+x)^{n}+(1+x)^{-n}=1+n x+\frac{n(n-1)}{2} x^{2}+\left(1-n x+\frac{n(n-1)}{2} x^{2}\right)$ $=2+n^{2} x^{2}$
With $n=4$ and $x=0.1$ this gives 2.16. The calculator value is 2.15
(25) $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{x}{\sqrt{1+x^{2}}}=x\left(1-\frac{1}{2} x^{2}\right) x$ to 3rd order.
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{1}{\sqrt{1+x^{2}}}=1-\frac{1}{2} x^{2}$ to 3rd order. $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=x$ exactly!

Test Yourself 4.1

(1) (a) 5
(b) 25
(c) 0.2 or $\frac{1}{5}$
(d) 0.04 or $\frac{1}{25}$
(e) 625
(2)
(a) 4
(b) $0.25 / \frac{1}{4}$
(c) 8
(d) 128
(e) $0.125 / \frac{1}{8}$
(3)
(a) $a^{\frac{1}{4}} / a^{0.25}$
(b) $a^{-\frac{1}{4}} / a^{-0.25}$
(c) $a^{\frac{2}{3}} / a^{0.667}$
(d) $a^{\frac{2}{5}} / a^{0.4}$
(e) $a^{-\frac{3}{2}} / a^{-1.5}$
(4) (a) 15
(b) 15
(c) 0.16
(d) 2.5
(5) $p=-2$
(6) $p=\frac{3}{2}$
(7) $p=\frac{3}{2}, k=\frac{1}{6 \sqrt{\pi}}$
(8) $R=\frac{16 \rho V}{\pi^{2} d^{4}}$, i.e. $k=\frac{16 \rho V}{\pi^{2}}$ and $n=-4$
(9) (a) $2000 \times L_{\odot}=8 \times 10^{29} \mathrm{~W}$
(b) $0.0081 \times L_{\odot}=3 \times 10^{24} \mathrm{~W}$
(10) $R=5 I^{-\frac{2}{3}}$, i.e. $c=5$ and $n=-\frac{2}{3}$
(11) (a) 0.6020
(b) -1.3980
(c) 0.9030
(d) 2.3010
(e) 0.3980
[Part (e) $\left.\log 2.5=\log \frac{10}{4}=\log 10-\log 4=1.0000-0.6020\right]$
(12)
(a) 3.170
(b) -1.585
(c) 2.585
(d) 0.585
(e) 1.262
$\left[\right.$ Part (e) $\left.\log _{3} 4=2 \log _{3} 2=\frac{2}{\log _{2} 3}\right]$
(13)
(a) 2.0
(b) -1.0
(c) $0.5 / \frac{1}{2}$
(d) $1.5 / \frac{3}{2}$
(e) $-1.25 /-\frac{5}{4}$
(14)
(a) $0.5 / \frac{1}{2}$
(b) $2.5 / \frac{5}{2}$
(c) -3
(d) $0.25 / \frac{1}{4}$
(e) 2.16
$\left[\operatorname{Part}\right.$ (e) $\left.\log _{4} 20=\log _{4} 2+\log _{4} 10=0.5+\frac{1}{\log _{10} 4}=0.5+\frac{1}{2 \log 2}\right]$
(15)
(a) $5 \log 2$
(b) $-\log 2$
(c) 0
(d) $-\log 2$
(16)
(a) $2 \ln 2+1$
(b) $3 \ln 2+1$
(c) $5 \ln 2-1$
(d) $4 \ln 2-1$
(e) $\frac{1}{2} \ln 2-2$
(17)
(a) $x=0.90$
(b) $x=-0.90$
(c) $x=4.61$
(d) $x=7.97$
(e) $x=403$
(18) (a) Remember that $e^{\ln b}=b$
$x \ln a=\ln a^{x} \therefore e^{x \ln a}=e^{\ln a^{x}}=a^{x} \quad$ QED
(b) $2^{\pi}=e^{\pi \ln 2}=e^{3.142 \times 0.6931}=8.82$
(1)
(a) $x=16$
(b) $x= \pm 8$
(c) $x=6.87 \times 10^{10}$
(d) $x= \pm \frac{1}{2}$
(e) $x=36$
(20)
(a) $L_{1}=10 \log \frac{1}{10^{-12}}=10 \log 10^{12}=10 \times 12=120 \mathrm{~dB} \mathrm{SIL}$
(b) $L_{1}=10 \log \left(10^{12}\right)(1)$

Consider an increase of 3 dB ; let the sound intensity be $k I$
Then $L_{1}+3=10 \log \left(10^{12} \mathrm{k}\right)$
$\therefore L_{1}+3=10 \log k+10 \log \left(10^{12}\right)$
Subtract equation (1). $\therefore 3=10 \log k$.
$\therefore \log k=0.3, \therefore k=2.00$ [3 s.f.]
21
(a) $1.980 \times 10^{6} \mathrm{~S}$
(b) 96 Bq
(c) $11.7 \times 10^{6} \mathrm{~s}$.
(22) (a) $f_{35}=1.55 \mathrm{~Hz} ; f_{45}=1.06 \mathrm{~Hz}$
(b) Substituting the values of l and f into $f=k l^{n}$: $1.55=k \times 0.35^{n}(1)$ and $1.06=k \times 0.45^{n}(2)$

Dividing equation (1) by equation (2) $\rightarrow 1.462=0.778^{n}$
Taking natural logs: $\rightarrow \ln 1.462=n \ln 0.778$
$\rightarrow n=-1.51\left[\log _{10}\right.$ can be used here instead]
Substituting into equation $(1) \rightarrow k=\frac{1.55}{0.35^{-1.51}}=0.32$
Alternative method: take logs of equations (1) and (2) and solve the resulting simultaneous equations for k and n.
(c) Plot a graph of $\ln f$ against $\ln l$ [or $\log f$ against $\log l]$. The graph should be a straight line with a negative gradient. The value of n is the gradient. The intercept on the $\log f$ axis is the value of $\log k$, so $k=10^{\text {intercept }}$.
(23) (a) Graph of $\ln C$ against x should be plotted [units of C and x can remain in $\min ^{-1}$ and cm$]$.
The gradient of the graph should be ~-0.49 and the intercept on the $\ln C$ axis ~ 6.3.
$\therefore \frac{1}{L}=0.49$ giving a value of $L=2.04 \mathrm{~cm}$
$\ln C_{0}=6.3 \therefore C_{0}=540 \mathrm{~min}^{-1}$
(b) $25=540 e^{-\frac{x}{2.04}} . \therefore-\frac{x}{2.04}=\ln \left(\frac{25}{540}\right) \rightarrow x=6.3 \mathrm{~cm}$.
[i.e. an additional shielding of 5.8 cm]
(24) (a) A graph of $\ln I$ against $\ln V$ has a gradient of ~ 0.547 and intercept of ~-0.729 on the $\ln I$ axis. These give n $=0.55$ [2 s.f.] and $k=0.48$ [2 s.f.]
(b) $c=k^{-1}=2.08 . m=1-n=0.45$
(25)
(a) $n=\frac{60}{8}=7.5 . \therefore A=800 \times 2^{-7.5}=4.42 \mathrm{kBq}$
(b) $\lambda=\frac{\ln 2}{8}=0.0866 \mathrm{day}^{-1}$.
$\therefore A=800 e^{-0.0866 \times 100}=0.138 \mathrm{kBq}=138 \mathrm{~Bq}$.
(c) (i) Gradient $=-\ln 2$; intercept $=\ln A_{0}$
$=6.68$ [with A in kBq]
(ii) Gradient $=-\lambda=0.0866$ day $^{-1}$; intercept $=\ln A_{0}$ i.e. same as in (i).

Test Yourself 5.1

(5)

6
(a) 173 mm
(b) 100 mm
(7) (a) 47.7 m
(b) 62.2 m

8
(a) 35.8 cm
(b) 46.7 cm
(9) (a) 180 mm
(b) 56.3°
(10)
(a) 48.2°
(b) 22.4 m
(11) $x=150 \mathrm{~m} ; y=260 \mathrm{~m}$
(12)
(a) height $=140 \mathrm{~m}$
(b) distance $=300 \mathrm{~m}$
(B) 1015 m
(14)
(a) 34.8°
(b) 49.3°
(c) 61.0°
(15) (a) 35.2°
(b) $n_{2}=1.52$ is irrelevant. ϕ would be the same even if this layer were not there.
(16)
(a) $n=1.60$
(b) 40.6°
(1) $n=1.58$
(18) $n=1.39$
(19) $n=1.40$
(21) $n=1.41$ [θ must be 45° and angle of incidence must be 90°]
(21) (a) $\cos \alpha=\sqrt{1-\sin ^{2} \alpha}=\sqrt{1-0.8^{2}}= \pm 0.6$
(b) $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{0.8}{ \pm 0.6}= \pm 1.33$
(22) $\cos 2 \beta=\cos (\beta+\beta)=\cos \beta \cos \beta-\sin \beta \sin \beta=\cos ^{2} \beta-\sin ^{2} \beta$

But $\sin ^{2} \beta=1-\cos ^{2} \beta$
$\therefore \quad \cos 2 \beta=\cos ^{2} \beta-\left(1-\cos ^{2} \beta\right)=2 \cos ^{2} \beta-1 \quad$ QED
(23) (a) $\cos \chi=\sqrt{1-\sin ^{2} \chi}= \pm \sqrt{1-x^{2}}$
(b) $\cos \left(180^{\circ}+\chi\right)=\cos 180^{\circ} \cos \chi-\sin 180^{\circ} \sin \chi$

$$
\begin{aligned}
& =-1 \times \cos \chi-0 \times \sin \chi \\
& \therefore \cos \left(180^{\circ}+\chi\right)=-\cos \chi= \pm \sqrt{1-x^{2}}
\end{aligned}
$$

(c) $\tan \left(360^{\circ}-\chi\right)=\frac{\sin \left(360^{\circ}-\chi\right)}{\cos \left(360^{\circ}-\chi\right)}$

$$
=\frac{\sin 360^{\circ} \cos \chi-\cos 360^{\circ} \sin \chi}{\cos 360^{\circ} \cos \chi+\sin 360^{\circ} \sin \chi}
$$

$\cos 360^{\circ}=\cos 0^{\circ}=1$ and $\sin 360^{\circ}=\sin 0^{\circ}=1$

$$
\begin{aligned}
\therefore \tan \left(360^{\circ}-\chi\right)=\frac{-\sin \chi}{\cos \chi} & =\frac{-x}{ \pm \sqrt{1-x^{2}}} \\
& = \pm \frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

24) Applying the cosine rule:

$15^{2}=25^{2}+35^{2}-2 \times 25 \times 35 \cos \theta$
$\therefore \theta=21.8^{\circ}$
$\therefore \phi=21.8^{\circ}$ [alternate angles]
$\therefore y=35 \sin 21.8^{\circ}=13.0 \mathrm{~cm}$
and $x=35 \cos 21.8^{\circ}=32.5 \mathrm{~cm}$.
(25) First draw the triangle [not to scale].

Applying the sine rule: $\frac{14}{\sin \theta}=\frac{10}{\sin 45^{\circ}}$

$\therefore \theta=\sin ^{-1}\left(\frac{14 \times \sin 45^{\circ}}{10}\right)=81.87^{\circ}$ or 98.13°
$\therefore \hat{B}=180^{\circ}-\left(\theta+45^{\circ}\right)=53.13^{\circ}$ or 36.87°
$\mathrm{AC}^{2}=10^{2}+14^{2}-2 \times 10 \times 14 \cos \mathrm{~B} \therefore \mathrm{AC}=11.3 \mathrm{~cm}$ or 8.5 cm
Alternatively: apply the cosine rule directly: Put $\mathrm{AC}=x$
$10^{2}=14^{2}+x^{2}-2 \times 14 x \cos 45^{\circ}$
Solve this quadratic equation for x.
(26) $\theta=\sin ^{-1} 0.5=\frac{1}{6} \pi$ or $\frac{5}{6} \pi$ or
$\theta=\sin ^{-1}(-0.25)=-0.253$ or -2.889
(27) (a) $\theta=\sin ^{-1}\left(\pm \frac{2}{\sqrt{5}}\right)=1.107$ or -2.034 .

Note: -1.107 and +2.034 are not solutions. The process of squaring introduces spurious solutions
(b) $\theta=0.262 \mathrm{rad}$ or $0.262-\pi \mathrm{rad}=-2.880 \mathrm{rad}$.
(c) $\theta= \pm 0.524 \mathrm{rad}$
(d) $\theta=0$ or $\pm 2.094 \mathrm{rad}$
(e) $\theta= \pm 1.57 \mathrm{rad}$ or 0.252 rad
(28) $\sqrt{2} \sin \alpha+\sqrt{2} \cos \alpha$
29) (a) $25 \sin (\alpha-1.287 \mathrm{rad})$
(b) $25 \cos (\alpha-2.858 \mathrm{rad})$
(30) $\phi=-0.643 \mathrm{rad}$.

Test Yourself 6.1

Questions (1)-(10

(11) $y=1.5 x-6$
(12) $y=-0.4 x+30$
(13) $V=-0.2 I+6.0$
(14) $V=4.14 \times 10^{-15} f-0.70$
(15) $v=0.8 t+16$
(16) $F=25 l-5.0$
(17) $V=-1.33 I+3.07$
(18) $v=-0.2 t+26$
(19) $F=0.5 l-3$
(20) $V=5 \times 10^{-15} f-1.5$
(21) $V=9.6-4.0 I, E=9.6 \mathrm{~V} ; r=4.0 \Omega$
(22) $k=1.06 \mathrm{~N} \mathrm{~cm}^{-1}, l_{0}=4.42 \mathrm{~cm}$
23) $a=8 \mathrm{~m} \mathrm{~s}^{-2} ; u=11600 \mathrm{~m} \mathrm{~s}^{-1}\left[\right.$ or $0.008 \mathrm{~km} \mathrm{~s}^{-2}$ and $11.6 \mathrm{~km} \mathrm{~s}^{-1}$]
(24) [Gradient $=4.2 \times 10^{-15}[\mathrm{~V} \mathrm{~s}]$, intercept $=-0.60$ [V]], leading to $h=6.7 \times 10^{-34} \mathrm{~J}$ s and $\phi=9.6 \times 10^{-20} \mathrm{~J}[=0.6 \mathrm{eV}]$

Test Yourself 6.2

The solutions given are the least squares fit solutions. For graphs drawn freehand, slightly different, but equally acceptable, answers will be obtained.
(1) Gradient -1.0 [Ω]; intercept 6.12 [V]. So emf $=6.12 \mathrm{~V}$; internal resistance $=1.0 \Omega$
(2) Gradient $0.21\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$, intercept $3.63\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$. So initial velocity $=3.63 \mathrm{~m} \mathrm{~s}^{-1}$; acceleration $=0.21 \mathrm{~m} \mathrm{~s}^{-2}$.
3) Gradient $0.228\left[\mathrm{~N} \mathrm{~cm}^{-1}\right]$; intercept $-1.13[\mathrm{~N}]$. So spring constant $=0.228 \mathrm{~N} \mathrm{~cm}^{-1}$, unloaded length $=4.9 \mathrm{~cm}$.
4) Gradient $0.0036\left[\mathrm{~atm}^{\circ} \mathrm{C}^{-1}\right]$, intercept 0.945 [atm]; So $p_{0}=0.945 \mathrm{~atm}$ and absolute zero (from data) $=-263^{\circ} \mathrm{C}$.
(5) Gradient $-0.0469\left[\mathrm{~V} \mathrm{~mA}^{-1}\right]$; intercept 10.5 [V]; Emf $=10.5 \mathrm{~V}$; internal resistance $=47 \Omega$.
(6) The graph of \sqrt{s} against t is a straight line with a gradient 1.14 and an intercept of 0.073 on the \sqrt{s} axis [LSF]. This is close enough to a zero intercept to verify the relationship. The acceleration is $2 \times$ gradient ${ }^{2}=2.6 \mathrm{~m} \mathrm{~s}^{-2}$.
(7) Graph v^{2} against s. It is straight with gradient 0.562 and intercept 404. The acceleration $a=\frac{1}{2} \times$ gradient $=0.28 \mathrm{~m} \mathrm{~s}^{-2}$. The intercept is u^{2} so $u=20 \mathrm{~m} \mathrm{~s}^{-1}$.
(8) Plot f against $1 / l$ on a restricted axis [e.g. $240-520 \mathrm{~Hz}$ and $2.4-5.0 \mathrm{~m}^{-1}$]. Other possibilities are $1 / f$ against l or the axis may be the other way around. Using $f \mathrm{v} 1 / l$ the intercept on the f axis is 1.2 Hz [LSF] which is close to zero and hence consistent with the relationship. The gradient is $c / 2=104\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$, so $c=208 \mathrm{~m} \mathrm{~s}^{-1}$.
(9) As in 6.5.2 the graph should be l against $1 / f$. The gradient is $c / 4$ and the intercept $-\varepsilon$. The graph is straight with gradient $8580\left[\mathrm{~cm} \mathrm{~s}^{-1}\right]$ and intercept -1.3 [cm] giving the speed of sound as $34320 \mathrm{~cm} \mathrm{~s}^{-1}$ [$342 \mathrm{~m} \mathrm{~s}^{-1}$] and end correction 1.3 cm .
(10) A graph of T^{2} against l should be straight with a gradient of $4 \pi^{2} / \mathrm{g}$ and intercept $4 \pi^{2} \varepsilon / \mathrm{g}$. The graph has a gradient of $4.11\left[\mathrm{~s}^{2} \mathrm{~m}^{-1}\right]$ and intercept $0.082\left[\mathrm{~s}^{2}\right]$. This gives $g=9.6 \mathrm{~m} \mathrm{~s}^{-2}$ and $\varepsilon=2 \mathrm{~cm}$.
(11) A graph of d against $1 / \sqrt{R}$ should be straight with gradient \sqrt{k} and intercept $-\varepsilon$. The graph has a gradient of 236 and an intercept on the d axis of -1.8 . This gives a value for k as $56000 \mathrm{cpm} \mathrm{cm}^{2}$, and ε as 1.8 cm .
(12) A graph of T^{2} against l^{2} should be straight with gradient $\frac{2 m}{k}$ and intercept $\frac{I}{k}$ on the T^{2} axis. The graph is straight with gradient $5600\left[\mathrm{~s}^{2} \mathrm{~m}^{-2}\right]$ and intercept $28.5\left[\mathrm{~s}^{2}\right]$. With $m=0.1 \mathrm{~kg}$ this gives a value of k of $3.6 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ [or, $\left.\mathrm{N} \mathrm{m} \mathrm{rad}^{-1}\right]$ and $I=1.0 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}$.
(13) A graph of $T^{2} y$ against y^{2} should be a straight line with gradient $\frac{4 \pi^{2}}{g}$ and intercept $\frac{4 \pi^{2} k^{2}}{g}$ on the $T^{2} y$ axis. The graph is a straight line of gradient $4.00\left[\mathrm{~s}^{2} \mathrm{~m}^{-1}\right]$ and intercept 0.76 [$\mathrm{s}^{2} \mathrm{~m}$] on the $T^{2} y$ axis. This gives $g=9.87 \mathrm{~kg} \mathrm{~m}^{-2}\left[\right.$ or $\mathrm{N} \mathrm{kg}^{-1}$] and $k=0.43 \mathrm{~m}$.
(14) A graph of $\frac{1}{V}$ against $\frac{1}{R}$ should be straight with gradient $\frac{r}{E}$ and intercept $\frac{1}{E}$ on the $\frac{1}{V}$ axis. The graph is straight with a gradient of $0.219\left[\Omega \mathrm{~V}^{-1}\right]$ and intercept $0.103\left[\mathrm{~V}^{-1}\right]$. This gives a values of E as 9.7 V and r as 2.1Ω.
(15) A graph of $\frac{1}{v}$ against $\frac{1}{u}$ [or vice versa] should be a straight line of gradient -1 with an intercept on either axis of $\frac{1}{f}$. The graph has a gradient of -1.00 as predicted and an intercept of 0.0679 on the $\frac{1}{v}$ axis, giving a value for f of 14.7 cm .
(16) The graph of $\sin \theta_{2}$ against $\sin \theta_{1}$ is straight with a gradient of 0.803 and an intercept of 0.0014 on the $\sin \theta_{2}$ axis, which is consistent with passing through the origin. Hence $\sin \theta_{1}$ $\propto \sin \theta_{1}$. The speed of light in glass is $0.803 \times$ the speed in water.
Speed of light in water $=\frac{3.00}{1.33} \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$. This gives the speed of light in glass as $1.81 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.

Data Exercise 6.1

E_{p} minimum $=-0.245$, at a separation of $1.12-1.13$

E_{p} minimum $=-0.245$, at a separation of 1.12-1.13

Data Exercise 6.2

The LSF graph has a gradient of $1.31\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$ and intercept of $0.006[\mathrm{~m}]$ on the s axis. This is consistent with a constant acceleration of $2.6 \mathrm{~m} \mathrm{~s}^{-2}$ and initial value of $s=0$.

Test Yourself 6.3

0

(2) f^{-1} is only defined between $x=0$ and $x=7$.
(3)

(4) (a) The function is symmetrical about $x=0$ and is >0 for all values of x. As $x \rightarrow \pm \infty, g \rightarrow+\infty$. The magnitude of the gradient increases as $|x|$ increases.
(b) Minimum at $(0,0.2)$

5 (a) (i) Minimum at $(0,-5)$
(ii) Points of inflexion at $\left(\pm \frac{1}{\sqrt{5}},-\frac{5}{2}\right)$; x-axis is an
asymptote
(iii)

(6)

7

(8) $\frac{3 x}{x^{2}-x-2} \equiv \frac{2}{x-2}+\frac{1}{x+1}$

Point of inflexion at $x=\frac{2-\sqrt[3]{2}}{1+\sqrt[3]{2}} \approx \frac{1}{3}$

(9) The graph has two vertical asymptotes, at $x=-d$ and $+d$. For $x<-d$ the potential function is as the graphs in Qs 7 and 8 (to the eye). For $-d<x<d$ the potential function is the negative of those between the asymptotes in Qs 7 and 8. It passes through $(0,0)$ which is also the point of inflexion. For $x>+d$ the potential function is as in Q7 and Q8 to the right of the + asymptote.
(10) (a) a and b are both zero and $c=k$.

The solution with $N(0)=0$ is $N=k t^{2} e^{-\lambda t}$
(b) Peak when $t=\frac{2}{\lambda}$

Points of inflexion when $t=\frac{2 \pm \sqrt{2}}{\lambda}$
Note that the gradient is zero when $t=0$.

(11) (a) $\Delta t=\frac{2 \pi}{\omega}$
(b) Amplitude $=A e^{-\lambda t}=A e^{-5} \sim 0.0067 A$
(c) $v=A e^{-\lambda t}[\omega \cos \omega t-\lambda \sin \omega t]$
(d) $v=A \sqrt{\omega^{2}+\lambda^{2}} e^{-\lambda t} \cos \left(\omega t+\tan ^{-1} \frac{\lambda}{\omega}\right)$
(e) Fractional energy loss per cycle $=\left(1-e^{-\frac{4 \pi \lambda}{\omega}}\right)$
(12)

(13) The turning points are 0.079 s earlier than those of the pure $\cos 0.2 \pi t$ function.
(44) (a) Minimum at $(0,0)$; maximum at $\left(-2, \frac{4}{3}\right)$
(b) Two other points of inflexion: at $x=\frac{-3 \pm \sqrt{5}}{2}$
(15) At the turning point, $v=\frac{3 \sqrt{2}-6}{2 d}$.

Test Yourself 7.1

(1) (a) $18.0 \mathrm{~km} \mathrm{~N} 56^{\circ} \mathrm{W}$
(b) 70.7 N due E
(c) $55.9 \mathrm{~N}, \mathrm{~N} 63.4^{\circ} \mathrm{W}$
(d) $44.7 \mathrm{~N}, \mathrm{~S} 26.6^{\circ} \mathrm{E}$
(e) $91.8 \mathrm{~N}, \mathrm{~N} 15.6^{\circ} \mathrm{E}$
(f) $17.3 \mathrm{~m} \mathrm{~s}^{-2}, \mathrm{~N} 60^{\circ} \mathrm{E}$.
(g) $100 \mathrm{~N}, \mathrm{~N} 30^{\circ} \mathrm{E}$.
(h) $72.1 \mathrm{~N}, \mathrm{E} 33.7^{\circ} \mathrm{S}$.
(2) $20.6 \mathrm{~m} \mathrm{~s}^{-1}$ at 14.0° to the horizontal.
(3) (a) Both components 7.07 N
(b) Down component $=453 \mathrm{~N}$; up component $=211 \mathrm{~N}$.
(c) N component $=2.74 \mathrm{~km} ; \mathrm{W}$ component $=-7.52 \mathrm{~km}$
(4)
(a) $F=20 \mathrm{~N} ; G=17.3 \mathrm{~N}$
(b) $\quad F=117 \mathrm{~N} ; G=110 \mathrm{~N}$
(5) $F=70 \mathrm{~N} ; \theta=21.8^{\circ}$
(6) $108 \mathrm{~N} ; 21.8^{\circ}$ below the 50 N force.
(7) (a) $\mathbf{F}=-2 \mathbf{i}-13 \mathbf{j}$
(b) $\mathbf{F}=13.2 \mathrm{~N}$ at 8.75° to the left of the minus \mathbf{j} direction

8 (a) $\mathbf{a}=-28 \mathbf{i}-4 \mathbf{j}$
(b) $\mathbf{a}=28.3 \mathrm{~m} \mathrm{~s}^{-2}, \mathrm{~W} 8.1^{\circ} \mathrm{S}$
(9) (a) $\mathbf{s}=20 \mathbf{i}+72 \mathbf{j}$
(b) $\mathbf{v}=10 \mathbf{i}+32 \mathbf{j}$
(c) $\mathbf{v}=33.5 \mathrm{~m} \mathrm{~s}^{-1}$ at 72.6° from the \mathbf{i} vector.
(10) (a) Over $0.2 \mathrm{~s}, \overline{\mathbf{a}}=120 \mathrm{~m} \mathrm{~s}^{-2}$; over $0.02 \mathrm{~s}, \overline{\mathbf{a}}=124.9 \mathrm{~m} \mathrm{~s}^{-2}$, both towards centre at midpoint of the time.
(b) $\mathrm{a}=\frac{v^{2}}{r}$ gives $\mathbf{a}=125 \mathrm{~m} \mathrm{~s}^{-2}$ towards centre. The mean values approach 125 as $\Delta t \rightarrow 0$.
(11) $T=180 \mathrm{~N}$.
(12) (a) 85.4 N
(b) 58.5 m
(13) $F=m g \sin \theta ; C=m g \cos \theta$
(b) $\theta_{\text {max }}=\tan ^{-1} 0.2=11.3^{\circ}$
(14) $a=1.51 \mathrm{~m} \mathrm{~s}^{-2}$
(15)
(a) $\theta=66.9^{\circ}$
(b) $F=230 \mathrm{~N}$
(16)
(a) $40 \mathbf{i}+10 \mathbf{j}$
(b) $70 \mathbf{i}-44 \mathbf{j}$
(c) Both 20.6 knot
(d) $14 \mathbf{i}-8.8 \mathbf{j}$
(e) 16.5 knot, $\mathrm{E} 32^{\circ} \mathrm{S}$
(17)
(a) $13000 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $5000 \mathbf{i}+8400 \mathbf{j}+7200 \mathbf{k}$
(c) $12140 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $[$ In km] $180000 \mathbf{i}+367200 \mathbf{j}+129600 \mathbf{k}$
(e) 429000 km
(18) (a) $\mathbf{a}=-3.7 \mathbf{j}\left[\mathrm{~m} \mathrm{~s}^{-2}\right] ; \mathbf{v}=30 \mathbf{i}+3 \mathbf{j}\left[\mathrm{~m} \mathrm{~s}^{-1}\right] ; \mathbf{s}=300 \mathbf{i}+215 \mathbf{j}[\mathrm{~m}]$
(b) $30.1 \mathrm{~m} \mathrm{~s}^{-1}$ at 5.7° [0.1 rad] above the horizontal
(c) $50 \mathrm{~m} \mathrm{~s}^{-1}$ at 53.1° below the horizontal
(d) 3 j
(19) (a) Position $=70.6 \mathbf{i}+70.4 \mathbf{j}$, i.e. height 70.4 m and horizontal distance 70.6 m
[Position from base of cliff]
Velocity, $\mathbf{v}=34.64 i$ i.e. $34.64 \mathrm{~m} \mathrm{~s}^{-1}$ horizontal
(b) Position $=202 \mathrm{~m}$ from base of cliff; $\mathbf{s}=202 \mathbf{i}$

Velocity, $\mathbf{v}=34.64 \mathbf{i}-37.2 \mathbf{j}$; i.e. $50.8 \mathrm{~m} \mathrm{~s}^{-1}$ at 47.1° below the horizontal.
(a) $\mathbf{p}=47 \mathbf{j}$
(b) $\mathbf{v}_{\text {Сом }}=5.875 \mathbf{j}$
(c) $\mathrm{KE}=209 \mathrm{~J}$
(21) (a) $\mathbf{p}=24 \mathbf{i}-9 \mathbf{j}$
(b) $\mathbf{v}_{\text {Сом }}=3 \mathbf{i}-1.125 \mathbf{j}$
(c) 109.5 J
(22) (a) $\mathbf{p}_{1}=\mathbf{p}_{0}+\mathbf{F} t=23 \mathbf{i}+25 \mathbf{j}$
(b) Easiest method uses $E_{\mathrm{k}}=\frac{p^{2}}{2 m} \rightarrow \Delta E_{\mathrm{k}}=280 \mathrm{~J}$
(23) (a) $\boldsymbol{u}=\frac{3}{2} \mathbf{i}+\frac{5}{2} \mathbf{j} ; \mathbf{a}=\mathbf{i}+\mathbf{j}$
(b) $\mathbf{s}=65 \mathbf{i}+75 \mathbf{j}$
(c) $\mathbf{F} \cdot \mathbf{s}=(2 \mathbf{i}+2 \mathbf{j}) \cdot(65 \mathbf{i}+75 \mathbf{j})=130+150=280 \mathrm{~J}$

Comment: F.s is the work done by the force which is the change in kinetic energy, i.e. the answer agrees with Q22 (b)
(24) F. $\Delta \boldsymbol{s}=600 \mathrm{~J} \therefore$ Final KE $=1000 \mathrm{~J}$
(25) (a) $\tau_{1}=30 \mathbf{k} ; \tau_{2}=-16 \mathbf{k}$
(b) $-14 \mathbf{k}$
(c) $\mathbf{F}_{3}=-4 \mathbf{i}-4 \mathbf{j}$
(d) $(x \mathbf{i}+y \mathbf{j}) \times \mathbf{F}_{3}=(x \mathbf{i}+y \mathbf{j}) \times(-4 \mathbf{i}-4 \mathbf{j})=(-4 x+4 y) \mathbf{k}$ This cross product must be $-14 \mathbf{k}$ $\therefore-4 x+4 y=-14$, i.e. $x-y=3.5$

Test Yourself 8.1

(1) (a) 0.909
(b) -23.4
(c) 15.0
(2) (a) -5.488 rad; - $0.795 \mathrm{rad} ; 0.795 \mathrm{rad} ; 5.488 \mathrm{rad}$
(b) - $2.214 \mathrm{rad} ;-0.927 \mathrm{rad} ; 4.069 \mathrm{rad} ; 5.356 \mathrm{rad}$
(c) -3.094 rad; 1.094 rad
(3) $6.79 \times 10^{-5} \mathrm{rad}$
(4) (a) $1 \mathrm{pc}=3.08 \times 10^{13} \mathrm{~km}$
(b) $1 \mathrm{pc}=3.25 \mathrm{l}-\mathrm{y}$
(5) 0.015%
(6) (a) $x=10 \cos 2 \pi t$
(b) $x=-10 \cos 2 \pi t$ or $x=10 \cos (2 \pi t \pm \pi)$
(c) $x=10 \sin 2 \pi t$ or $x=10 \cos \left(2 \pi t-\frac{\pi}{2}\right)$
(d) $x=10 \sin (2 \pi t-1.8 \pi)$ or $x=10 \cos (2 \pi t-0.3 \pi)$

NB There are other ways of expressing these functions
(7) (a) $v_{\max }=20 \pi=62.8 \mathrm{~cm} \mathrm{~s}^{-1} ; a_{\max }=40 \pi^{2}=396 \mathrm{~cm} \mathrm{~s}^{-2}$
(b) for 6(a): $v_{\text {max }}$ at -0.25 s and $0.75 \mathrm{~s} ; a_{\text {max }}$ at -0.5 s and 0.5 s for $6(\mathrm{~b}): v_{\text {max }}$ at 0.25 s and $-0.75 \mathrm{~s} ; a_{\text {max }}$ at $-1 \mathrm{~s}, 0$ and 1 s for 6 (c): $v_{\text {max }}$ at $-1 \mathrm{~s}, 0$ and 1 s ; $a_{\text {max }}$ at -0.25 s and 0.75 s for $6(\mathrm{~d}): v_{\text {max }}$ at -0.1 s and $0.9 \mathrm{~s} ; a_{\text {max }}$ at -0.35 s and 0.65 s
(8) $\omega=\sqrt{\frac{k}{m}}=\sqrt{50}=7.07 \mathrm{~s}^{-1} ; f=\frac{\omega}{2 \pi}=1.125 \mathrm{~Hz} ; T=\frac{1}{f}=0.889 \mathrm{~s}$; $A=12 \mathrm{~cm}$
(9)

(10) $x=12 \cos 7.07 t ; v=-85 \sin 7.07 t ; a=-600 \cos 7.07 t$
[in cm; again there are several ways of writing these,
e.g. $\left.v=85 \cos \left(7.071 t+\frac{\pi}{2}\right)\right]$
(11) $x=2.82 \mathrm{~cm} ; v=82.5 \mathrm{~cm} \mathrm{~s}^{-1} ; a=-141 \mathrm{~cm} \mathrm{~s}^{-2}$.
(12) $0.556 \mathrm{~s}, 0.778 \mathrm{~s}, 1.444 \mathrm{~s}$ and 1.667 s
(B) $\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} \times 0.5 \times(0.849 \sin 7.071 t)^{2}=0.176 \mathrm{~J}$
P.E. $=\frac{1}{2} k x^{2}:$ Extension $=\frac{m g}{k}-0.0187=0.178 \mathrm{~m}$
$\therefore \mathrm{PE}=0.396 \mathrm{~J}$
(44) (a) Max velocity $=A \omega=2.0 \times 10=20 \mathrm{~m} \mathrm{~s}^{-1}$.

This occurs at $t=0$.
\therefore K.E (0) $=\frac{1}{2} \times 2 \times 20^{2}=400 \mathrm{~J}$. This is the maximum K.E.
(b)

(15) (a) $-0.192 \mathrm{~s} ;-0.058 \mathrm{~s} ; 0.008 \mathrm{~s} ; 0.142 \mathrm{~s}$.
(b) $-0.196 \mathrm{~s} ;-0.154 \mathrm{~s} ; 0.004 \mathrm{~s} ; 0.046 \mathrm{~s}$
(16) (a) $I=0.12 \cos 200 \pi t$
(b) (i) $V=3.71 \mathrm{~V}$, (ii) $I=0.037 \mathrm{~A}$, (iii) $P=0.138 \mathrm{~W}$
(c) (i) $V_{\mathrm{rms}}=8.49 \mathrm{~V}$, (ii) $I_{\mathrm{rms}}=0.0849 \mathrm{~A}$, (iii) $\langle P\rangle=0.720 \mathrm{~W}$.
(17)
(a) (i) $X_{\mathrm{C}}=\frac{1}{\omega C}=159 \Omega$, (ii) $I_{0}=\frac{V_{0}}{X_{\mathrm{C}}}=0.075 \mathrm{~A}$
(b) $I=0.075 \cos \left(200 \pi t+\frac{\pi}{2}\right)$
(c) $I=-0.071 \mathrm{~A}$
(18)
(a) $I=0.191 \cos \left(200 \pi t-\frac{\pi}{2}\right)$
(b) $I=0.182 \mathrm{~A}$
(19) (a) (i) $Z=\sqrt{100^{2}+159^{2}}=188 \Omega$,
(ii) $I_{0}=0.064 \mathrm{~A}$,
(iii) $V_{\mathrm{R}}=6.4 \mathrm{~V} ; V_{\mathrm{C}}=10.2 \mathrm{~V}$
(b) $V=\sqrt{10.2^{2}+6.4^{2}}=12 \mathrm{~V}$

(c) $\theta=\tan ^{-1}\left(\frac{10.2}{6.4}\right)=1.01 \mathrm{rad}$

20 (a) X is a resistor because V is in phase with I; Y is a capacitor because I leads V by 90°.
(b) $R=\frac{V_{\mathrm{R}}}{I}=\frac{12}{2 \times 10^{-3}}=6 \mathrm{k} \Omega ; \frac{1}{\omega C}=\frac{V_{\mathrm{C}}}{I}$
$\therefore C=\frac{I}{\omega V_{C}}=\frac{2 \times 10^{-3}}{500 \times 6}=0.67 \mu \mathrm{~F} / 670 \mathrm{nF}$
(c) Applied voltage $=\sqrt{12^{2}+6^{2}}=13.4 \mathrm{~V}$.; angle $=0.464 \mathrm{rad}\left(=26.6^{\circ}\right)$
(21) (a) V_{X} is unchanged at 12 V because resistance is constant. V_{Y} is halved to 3 V because capacitor reactance is inversely proportional to frequency.

(b) $V=12.4 \mathrm{~V} ; \phi=0.245 \operatorname{rad}\left(14.0^{\circ}\right)$
(22) Method: $X_{C}=\frac{1}{250 \times 0.67 \times 10^{-6}}=6000 \Omega$
$Z=\sqrt{R^{2}+X^{2}}=\sqrt{6^{2}+6^{2}}=8.49 \mathrm{k} \Omega$
$\therefore I=1.58 \mathrm{~mA}$
$\therefore V_{\mathrm{R}}=9.48 \mathrm{~V} ; V_{\mathrm{C}}=9.48 \mathrm{~V} ; V=13.4 \mathrm{~V}$

23 (a) Method: $V_{\mathrm{R}}=I R=0.1 \times 470=47 \mathrm{~V}$;

$$
\begin{aligned}
& V_{\mathrm{C}}=\frac{1}{\omega C}=\frac{0.1}{500 \times 2.5 \times 10^{-6}}=80 \mathrm{~V} \\
& V_{\mathrm{L}}=I \omega L=0.1 \times 500 \times 2.4=120 \mathrm{~V} .
\end{aligned}
$$

(b) $V=\sqrt{47^{2}+(120-80)^{2}}=61.7 \mathrm{~V}$
(c) $\langle P\rangle=I^{2} R$ [rms current $]=0.1^{2} \times 470=4.7 \mathrm{~W}$

$$
\text { [or } V_{\mathrm{R}} I=47 \times 0.1=4.7 \mathrm{~W} \text {] }
$$

(24) Method: $X_{\mathrm{L}}=\omega L=2 \pi \times 100 \times 2.4=1510 \Omega$
$X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi \times 100 \times 2.5 \times 10^{-6}}=637 \Omega$.
$Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{C}}\right)^{2}}=\sqrt{470^{2}+873^{2}}=991 \Omega$

$\therefore I=\frac{V}{Z}=\frac{40}{991}=0.040 \mathrm{~A}$
(25)
(a) $\omega=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{2.4 \times 2.5 \times 10^{-6}}}=408 \mathrm{~s}^{-1} . \therefore f=\frac{\omega}{2 \pi}=65.0 \mathrm{~Hz}$
(b) The reactances of the inductor and capacitor are equal and opposite, so $Z=R$.
$\therefore I=\frac{V}{R}=\frac{50}{470}=0.106 \mathrm{~A}$.
(c) $V_{\mathrm{R}}=50 \mathrm{~V} ; V_{\mathrm{L}}=I \omega L=0.106 \times 408 \times 2.4=104 \mathrm{~V}$;
$V_{\mathrm{C}}=V_{\mathrm{L}}=104 \mathrm{~V}$
[Alternatively calculate V_{C} using $V_{C}=\frac{I}{\omega C}$]
(d) Only the resistor dissipates power,
so $\langle P\rangle=I_{\mathrm{rms}}{ }^{2} R=0.106^{2} \times 470=5.3 \mathrm{~W}$

Test Yourself 9.1

(1) $\mathbf{E}=3 \mathrm{kV} \mathrm{m}^{-1}$ downwards [or $3 \mathrm{kN} \mathrm{C}^{-1}$]
(2) $\mathbf{E}=980 \mathrm{~V} \mathrm{~m}^{-1}$ upwards
(3) $9.0 \times 10^{24} \mathrm{~kg}$
(4) 40000 km from the Moon on the line joining the centres of the Earth and Moon.
(5) $V_{G}=-1.13 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$
(6) Acceleration due to Sun $=2.4 \times$ acceleration due to Earth [NB This means that the Moon's path is always concave to the Sun]
(7) $1.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ at 10.0° to original direction [0.174 rad]
(8) $4.5 \mathrm{MV} \mathrm{m}^{-1}$
(9) 450 kV
(10) 22 pF
(11) If the sphere carries a charge, Q, the potential, $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{a}$. $\therefore \frac{Q}{V}=C=4 \pi e_{0} a$
(12) Field is radial, so at right angles to the curved surface of an imaginary concentric cylinder.
\therefore Flux emerging from cylinder $=E 2 \pi r l=\frac{Q}{\varepsilon_{0}}$
$Q=3 \times 10^{-6} l . \therefore E 2 \pi \times 0.1 l=\frac{3 \times 10^{-6} l}{8.854 \times 10^{-12}}$,
leading to $E=540 \mathrm{kV} \mathrm{m}^{-1}$.
(13) $2.4 \mu \mathrm{C} \mathrm{m}^{-2}$
(4) Method: Use vector equilibrium to find the horizontal force on each sphere [0.253 mN]
Then use $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q Q}{r^{2}} \rightarrow Q=16.8 \mathrm{nC}$
(15) (a) E due to each $=60500 \mathrm{Vm}^{-1}$ in opposite directions.
(b) Resultant field $=0$
(16) $V=3024+3024=6050 \mathrm{~V}$
(1) $W=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{d^{2}}=9 \times 10^{9} \times \frac{\left(16.8 \times 10^{-9}\right)^{2}}{0.1}$

$$
=2.54 \times 10^{-5} \mathrm{~J} \sim 25 \mu \mathrm{~J}
$$

(18) Electrical potential energy 10 cm apart $=2.54 \times 10^{-5} \mathrm{~J}$
\therefore Electrical PE 5 cm apart $=5.08 \times 10^{-5} \mathrm{~J}$
\therefore Loss in electrical PE $=2.54 \times 10^{-5} \mathrm{~J}$
Gain in height between the two positions $=0.48 \mathrm{~cm}$ [needs calculating]
\therefore Gain in gravitational potential energy $=m g \Delta h=9.4 \times 10^{-6} \mathrm{~J}$
\therefore Loss in PE $=2.54 \times 10^{-5}-9.4 \times 10^{-6} \mathrm{~J}=1.60 \times 10^{-5} \mathrm{~J}$
Using $\mathrm{KE}=\frac{1}{2} m v^{2}$ we get $v=0.4 \mathrm{~m} \mathrm{~s}^{-1}$.
(19)
(a) $121000 \mathrm{Vm}^{-1}$
(b) 0

21
(a) $5.95 \times 10^{24} \mathrm{~kg}$
(b) $9.78 \mathrm{~N} \mathrm{~kg}^{-1}$ [Both correct to 2 s.f.]
(21) Total mass within outer core boundary $=1.98 \times 10^{24} \mathrm{~kg}$

This gives $g=10.8 \mathrm{~N} \mathrm{~kg}^{-1}$
The uniform density value would be $\frac{3500}{6370} \times 9.8=5.4 \mathrm{~N} \mathrm{~kg}^{-1}$, i.e. true value $\sim 2 \times$ uniform density value.
(22) (a) acceleration $=8.8 \times 10^{12} \mathrm{~m} \mathrm{~s}^{-2}$
(b) radius of circle $=1.14 \mathrm{~mm}$
(c) 14 MHz

23 The force due to the magnetic field provides the centripetal force.
$\therefore \frac{m v^{2}}{r}=B q v . \therefore \omega=\frac{v}{r}=\frac{B q}{v}$.
$\therefore f=\frac{B q}{2 \pi m}$, which is independent of the speed.
For a proton with $m=1.67 \times 10^{-27} \mathrm{~kg}, f=460 \mathrm{~Hz}$.
(24) Peak current $=I_{0} \times \sqrt{2}=28.3 \mathrm{~A}$.
$F_{\text {max }}=$ BIl $\cos \theta=5 \times 10^{-5} \times 28.3 \cos 60^{\circ}=0.7 \mathrm{mN} ; f=50 \mathrm{~Hz}$
$\therefore \omega=100 \pi$
$\therefore \mathrm{F} / \mathrm{mN}=0.7 \cos (100 \pi t+\varepsilon)$
(25) Algebraically, induced emf $\varepsilon_{\text {in }}=\frac{\Delta(N \Phi)}{t}=B \ell v$
$\therefore I=\frac{B \ell V}{R}$. So the motor force, $B I \ell=\frac{B^{2} \ell^{2} v}{R}$.
\therefore The work done per second, $P=\frac{B^{2} \ell^{2} v^{2}}{R}$
The electrical power $P=I^{2} R=\left(\frac{B \ell v}{R}\right)^{2} R=\frac{B^{2} \ell^{2} v^{2}}{R}$, which is the same.

Numerically in Example G, both powers are 0.05 W.

Data Exercise 10.1

$x_{1}=2.0 ; y_{1}=14.0$

x_{2}	y_{2}	Δx	Δy	$\frac{\Delta y}{\Delta x}$
3.0	29.00	1.0	15	15
2.5	20.75	0.5	6.75	13.5
2.1	15.23	0.1	1.23	12.3
2.05	14.6075	0.05	0.6075	12.15
2.01	14.1203	0.01	0.1203	12.03
2.005	14.06008	0.005	0.060075	12.015
2.001	14.012	0.001	0.012003	12.003

As $\Delta x \rightarrow 0, \frac{\Delta y}{\Delta x}$ appears to tend to 12 . This is confirmed by the fact that if $\Delta x=-0.001, \frac{\Delta y}{\Delta x}=11.997$.

Data Exercise 10.3

No. of strips	Lower area $\left(A_{\mathrm{L}}\right)$	Upper area $\left(A_{\mathrm{U}}\right)$
10	6.84	9.24
20	7.41	8.61
100	7.88	8.12
200	7.94	8.06
1000	7.988	8.012

Test Yourself 10.1

(1) $\frac{\mathrm{d} y}{\mathrm{~d} x}=75 x^{2}=168.75$
(2) $\frac{\mathrm{d} x}{\mathrm{~d} t}=15 \cos t=-15$
(3) $\frac{\mathrm{d} N}{\mathrm{~d} t}=600 e^{t}=989$
(4) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6.0}{t}=1.0$
(5) $\frac{\mathrm{d} y}{\mathrm{~d} x}=8+6 t=23$
(6) $\frac{\mathrm{d} x}{\mathrm{~d} t}=-3 \sin t+8 \cos t=-3.00$
(7) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}+3 e^{x}=26.9$
(8) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{10}{t}-\frac{1.5}{\sqrt{t}}=1.75$
(9) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{2}\left(x^{2}-3\right)$
(10) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+6 x-5$
(11) $\frac{\mathrm{d} y}{\mathrm{~d} x}=x(2+x) e^{x}$
(12) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 t \sin t+3 t^{2} \cos t$
(B) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{(x-1)^{2}}$
(14) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-4 x-7}{(x-2)^{2}}$
(15) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 t^{3}(4 \cos t+t \sin t)}{\cos ^{2} t}$
(16) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-2 \ln x}{x^{3}}$
(1)
(b) $\frac{\mathrm{d} f}{\mathrm{~d} g}=3 g^{2}=3\left(x^{2}+2\right)^{2} ; \frac{\mathrm{d} g}{\mathrm{~d} x}=2 x$
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3\left(x^{2}+2\right)^{2} 2 x=6 x^{5}+24 x^{3}+24 x$

Check: $f=\left(x^{2}+2\right)^{3}=x^{6}+6 x^{4}+12 x^{2}+8$
$\therefore \frac{\mathrm{d} f}{\mathrm{~d} x}=6 x^{5}+24 x^{3}+24 x \quad$ QED.
(18) $\dot{x}=75 \cos 3 t$
(19) $\dot{v}=-31400 \sin \left(314 t-\frac{\pi}{4}\right)$
(20) $\frac{\mathrm{d} N}{\mathrm{~d} t}=-1.0 \times 10^{11} \mathrm{e}^{-0.1 t}$
(21) $\frac{\mathrm{d} Q}{\mathrm{~d} t}=-\frac{1}{5} e^{-t / 25}$
(22) $\frac{\mathrm{d} V}{\mathrm{~d} R}=\frac{E r}{(R+r)^{2}}$. When $R=0$, gradient $=\frac{\mathrm{d} V}{\mathrm{~d} R}=\frac{E}{r}$
(23) (a) $\frac{\mathrm{d} Q}{\mathrm{~d} t}=-\frac{Q_{0}}{R C} e^{-t / R C}$
(b) $\frac{\mathrm{d} Q}{\mathrm{~d} t}=-0.0092$
(c) $(-) 9.2 \mathrm{~mA}$
(24) $E_{\mathrm{IN}}=B A N \omega \cos \omega t=62.8 \cos 100 \pi t$.
\therefore Peak voltage $=62.8 \mathrm{~V}$
Period: $100 \pi T=2 \pi \therefore T=0.02 \mathrm{~s}=20 \mathrm{~ms}$

(25) (a) $v=A \omega \cos \left(\omega t+\frac{\pi}{4}\right)\left[=60 \cos \left(6 t+\frac{\pi}{4}\right)\right]$
(b) $a=-A \omega^{2} \sin \left(\omega t+\frac{\pi}{4}\right)\left[=-360 \sin \left(6 t+\frac{\pi}{4}\right)\right]$
(c) See graphs
(d) 0.36 N

Test Yourself 10.2

(1) $f(x)=\frac{25}{6} x^{6}$
(2) $f(x)=-\frac{6}{x^{2}}+8$
(3) $f(t)=2 t^{2}+t+4$
(4) $f(t)=-500 e^{-0.005 t}$
(5) $f(t)=-2 \cos 2.5 t+8 \sin 1.25 t$
(6) $\left[2 x^{3}\right]_{2}^{4}=128-16=112$
(7) $\left[-2.5 e^{-2 t}\right]_{0}^{0.5}=1.58$
(8) $[10 \ln x]_{1}^{5}=16.1$
(9) $\left[\frac{2}{\pi} \sin \pi t+2 x\right]_{0}^{2}=4$
(10) $\left[-x^{-3}\right]_{1}^{\infty}=1$
(11) $[k=5000] W=5493 \mathrm{~J}$ (12) $[k=792.4] W=4445 \mathrm{~J}$
(13) $\left[k=2.048 \times 10^{17} \mathrm{~N} \mathrm{~m}^{2}\right] . W=\int_{r_{1}}^{r_{2}} \frac{k}{r^{2}} \mathrm{~d} r=\left[-\frac{k}{r}\right]_{r_{1}}^{r_{2}}=k\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$
$=1.5 \times 10^{10} \mathrm{~J}$
(14) $W=\int_{r_{1}}^{r_{2}} \frac{G M m}{x^{2}} \mathrm{~d} x=\left[-\frac{G M m}{x}\right]_{r_{1}}^{r_{2}}=G M m\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$
(15) $W=-\frac{G M m}{a}$
(16) $V_{\mathrm{G}}=-\frac{G M}{a}$
(17) $V_{\mathrm{E}}=\frac{1}{q} \int_{\infty}^{a}-\frac{Q q}{4 \pi \varepsilon_{0} x^{2}} \mathrm{~d} x=\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{x}\right]_{\infty}^{a}=\frac{Q}{4 \pi \varepsilon_{0} a}$
(18) Potential energy at a $\int_{\infty}^{a} \frac{Q d}{2 \pi \varepsilon_{0} x^{3}} \mathrm{~d} x=\left[-\frac{Q d}{4 \pi \varepsilon_{0} x^{2}}\right]_{\infty}^{a}=-\frac{Q d}{4 \pi \varepsilon_{0} a^{2}}$
\therefore KE at $a=\frac{Q d}{4 \pi \varepsilon_{0} a^{2}} \therefore v=\sqrt{\frac{Q d}{2 \pi \varepsilon_{0} m a^{2}}}$
(19)
(a) $N_{0}=\int_{0}^{\infty} A e^{-\lambda t}=\frac{A_{0}}{\lambda}$
(b) $\quad N_{0}=1.75 \times 10^{16}$.
(20) (a) $\frac{\mathrm{d} Q}{\mathrm{~d} t}=-I_{0} e^{-t / R C}, \therefore Q=\int\left(-I_{0} e^{-t / R C}\right) \mathrm{d} t=I_{0} R C e^{-t / R C}+c$

Putting $Q=0$ when $t=\infty \rightarrow c=0$, i.e. $\mathrm{Q}=I_{0} R C e^{-t / R C}$
(b) $Q_{0}=I_{0} R C$
(c) $Q(200)=68 \mathrm{mC}$.
(21) (a) Substituting $(0, h)$ into $F=a-b t^{2} \rightarrow h=a$.

Substituting $(\lambda, 0)$ into $F=a-b t^{2}$
$\rightarrow 0=a-b \lambda^{2}=h-b \lambda^{2}$ (from above)
$\therefore b=\frac{h}{\lambda^{2}} \therefore F=h-\frac{h}{\lambda^{2}} t^{2}=h\left(1-\frac{t^{2}}{\lambda^{2}}\right) \quad$ QED
(b) $\Delta p=\frac{4 \lambda h}{3}$
(c) $h=5740 \mathrm{~N}$
(22)
(a) $x=\int 25 e^{-0.02 t} \mathrm{~d} t=-1250 e^{-0.02 t}+c$; Applying initial conditions gives $x=1250\left(1-e^{-0.02 t}\right)$.
(b) $D=x$ at $t=\infty ; \therefore D=1250 \mathrm{~m}$
(c) $\quad v=25-\frac{x}{50}$
(23) (a) $\Delta M=\frac{\Delta x}{l} M$
(b) $\Delta E_{\mathrm{k}}=\frac{1}{2} \frac{M \omega^{2}}{l} x^{2} \Delta x$
(c) $E_{\mathrm{k}}=\int_{0}^{l} \frac{1}{2} \frac{M \omega^{2}}{l} x^{2} \mathrm{~d} x=\frac{1}{6} M l^{2} \omega^{2}$
(d) $I=\frac{1}{3} M l^{2}$
(24) Dividing by the $\frac{1}{2} \omega^{2}$ term from the start:
$I=\int_{-1 / 2}^{1 / 2} \frac{M}{l} X^{2} \mathrm{~d} x=\frac{1}{12} M l^{2}$
(25) (a) Area of ring $=2 \pi r \Delta r$.
\therefore Mass of ring, $\Delta M=\frac{2 \pi r \Delta r}{\pi a^{2}} M=\frac{2 r \Delta r}{a^{2}} M$
(b) $\Delta E_{\mathrm{k}}=\frac{M r^{3} \omega^{2} \Delta r}{a^{2}}$, so $E_{\mathrm{k}}=\frac{M \omega^{2}}{a^{2}} \int_{0}^{a} r^{3} \mathrm{~d} r=\frac{1}{4} M a^{2} \omega^{2}$
(c) $I=\frac{1}{2} M a^{2}$

Test Yourself 11.1

(1) $v=10 e^{-5 t}$
(2) $N=1 \times 10^{6} e^{-0.001 t}$
(3) $I / \mu \mathrm{A}=6 e^{-0.2 t}$
(4) $x=5 \sin 8 t$
(5) $x=0.1 \cos 5 t$
(6) $h=50 e^{-0.02 t}$
(7) $V=9 e^{-0.097 t}$
(8) $y=0.224 \cos (10 t-1.11)$ or $y=0.224 \sin (10 t+0.46)$
(9) $\mathrm{Q} / \mu \mathrm{C}=0.2 \sin 500 t$
(10) $\mathrm{Q} / \mathrm{mC}=47 \cos 100 t$ $\therefore \quad \mathrm{T}=0.0628 \mathrm{~s}$
(11) $v=50-30 e^{-0.1 t}$
(12) $\quad N=\frac{R}{\lambda}\left(1-e^{-\lambda t}\right)$
(13) $V=16 e^{-0.3 t}+24$
(14) $I=0.5 \sin 13 t+1.2 \sin 12 t$
(15) $x=0.2(1-\cos 10 t)$
(16) $v=12.5\left(1-e^{-0.4 t}\right)+5 t$
(17) $v=0.206 e^{-12 t}+0.443 \sin (2 \pi t-0.482)$
(18) $N=2 \times 10^{7}\left(e^{-0.2 t}-e^{-0.1 t}\right)$
(19) $N_{\mathrm{B}}=1 \times 10^{15}\left(e^{-0.05 t}-\mathrm{e}^{-0.125 t}\right)$ with t in days.
$\therefore N_{\mathrm{B}}$ (20 days) $=2.9 \times 10^{14}$
(20) $x / \mathrm{m}=0.1 \cos 2.5 t$
(21) $x=2.0 e^{-2 t} \cos 9.80 t$
(22)
(a) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=0$
(b) $x=-0.15 e^{-2 t} \cos \sqrt{5} t$

23 (a) $k=0.1 ; p=\pi$, i.e. $3.1420 ; \omega=3.1420$

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+0.1 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9.872 x=0
$$

(b) $x=0.615 e^{-0.05 t} \sin \pi t$
(c) 0.00026 s
[without damping the period would be 1.99974 s]
(24)
(a) $L \frac{\mathrm{~d} I}{\mathrm{~d} t}+I R=V_{0} \cos \omega t$ or $\frac{\mathrm{d} I}{\mathrm{~d} t}+I \frac{R}{L}=\frac{V_{0}}{L} \cos \omega t$
(b) Phase difference, $\varepsilon=\tan ^{-1}\left(\frac{\omega L}{R}\right)$
(c) $V_{0}=I_{0} \sqrt{\omega^{2} L^{2}+R^{2}}$
(25) (a) If $L \frac{\mathrm{~d} I}{\mathrm{~d} t}+I R+\frac{Q}{C}=V_{0} \cos \psi t$,
differentiating $\rightarrow L \frac{\mathrm{~d}^{2} I}{\mathrm{~d} t^{2}}+R \frac{\mathrm{~d} I}{\mathrm{~d} t}+\frac{I}{C}=-V_{0} \psi \sin \psi t$
Look for a CF of the form $I=I_{0} \cos (\psi t+\varepsilon)$
Substituting into the differential equation gives:
$-V_{0} \psi \sin \psi t=-I_{0} L \psi^{2} \cos (\psi t+\varepsilon)-I_{0} R \psi \sin (\psi t+\varepsilon)$ $+\frac{I_{0}}{C} \cos (\psi t+\varepsilon)$
$\therefore-V_{0} \sin \psi t=I_{0}\left[\frac{1}{\psi C}-\psi L\right] \cos (\psi t+\varepsilon)-I_{0} R \sin (\psi t+\varepsilon)$
To find the values of I_{0} and ε, consider substitute the following values of t :
$t=0: \quad 0=\left[\frac{1}{\psi C}-\psi L\right] \cos \varepsilon-R \sin \varepsilon$ [dividing by $\left.I_{0}\right]$
$\therefore \tan \varepsilon=\frac{\frac{1}{\psi C}-\psi L}{R}$
$\therefore \sin \varepsilon=\frac{\frac{1}{\psi C}-\psi L}{\sqrt{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}}}$ and $\cos \varepsilon=\frac{R}{\sqrt{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}}}$
$\psi t=\frac{\pi}{2} \quad-V_{0}=-I_{0}\left[\frac{1}{\psi C}-\psi L\right] \sin \varepsilon-I_{0} R \cos \varepsilon$
$\frac{\therefore V_{0}=I_{0}}{\sqrt{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}}}\left(\left[\frac{1}{\psi C}-\psi \psi t\right] \frac{\frac{1}{\psi C}-\psi L}{\sqrt{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}}}+R\right.$
$\therefore=I_{0}\left\{\frac{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}}{\sqrt{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}}}\right\}=I_{0} \sqrt{R^{2}+\left(\frac{1}{\psi C}-\psi L\right)^{2}} \quad$ QED
(b) $V_{0}=I_{0} \sqrt{R^{2}+\left(\psi L-\frac{1}{\psi C}\right)^{2}}$.
$\therefore I_{0}$ is maximum when $\psi L-\frac{1}{\psi C}=0$
$\therefore \psi^{2}=\frac{1}{L C} \quad \therefore \psi=\frac{1}{\sqrt{L C}} \quad \therefore f_{\mathrm{R}}=\frac{1}{2 \pi \sqrt{L C}}$

Test Yourself 12.1

(1)
(a) $3 \mathrm{i} ;-3 \mathrm{i}$
(b) $-4+5 \mathrm{i}$
(c) (i) 1
(ii) i
(iii) -1
(iv) -i
(d) (i) 1
(ii) -1
(iii) -i
(iv) i
(e) (i) 0
(ii) 1
(iii) -1

2
(a) $\operatorname{Re}\left(z^{*}\right)=4$
(b) $\operatorname{Im}\left(z^{*}\right)=3$
(c) $\operatorname{Re}(i z)=-3$
(d) $\operatorname{Im}(\mathrm{iz})=4$
(3) (a) $x=3+2 \mathrm{i}$ and $3-2 \mathrm{i}$
(b) $-3+2 i$ and $-3-2 i$ respectively
(c) $x^{2}+6 x+13=0$
(4) 2 i
5 (a) 13 i
(b) i
(c) $-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}$
(d) $\left(a^{2}-b^{2}\right)+2 a b i$
6
(a) 5
(b) $\frac{4}{25}-\frac{3}{25} \mathrm{i}$
(c) $\frac{1}{25} \sqrt{3^{2}+4^{2}}=\frac{1}{5}$
(d) $\frac{1}{5}$
(7) (a) i
(b) $\frac{1}{2}(\sqrt{3}+1)+\frac{1}{2}(\sqrt{3}-1) \mathrm{i}$
8 (a) (i) $\sqrt{3}+\mathrm{i}$
(ii) $2+2 \sqrt{3}$ i
(iii) $-2+2 \sqrt{3}$ i
(iv) $-4-4 \sqrt{3} i$
(b) (i) $\sqrt{2} e^{i \frac{\pi}{4}}$
(ii) $\sqrt{2} e^{i \frac{3 \pi}{4}}$
(iii) $\sqrt{2} e^{-i \frac{3 \pi}{4}}$
(iv) $\sqrt{2} e^{-i \frac{\pi}{4}}$
(vi) $2 e^{-i \frac{5 \pi}{6}}$
(v) $2 e^{-i \frac{\pi}{6}}$
(9)
(b) $\frac{1}{2} e^{-i \frac{\pi}{6}}$
(a) $8 \mathrm{e}^{\mathrm{i} \frac{\pi}{2}}=8 \mathrm{i}$
(c) $\sqrt{2} e^{i \frac{\pi}{4}} \times 2 e^{-\mathrm{i} \frac{\pi}{6}}=2 \sqrt{2} e^{i \frac{\pi}{12}}$
(d) $\frac{\sqrt{2} e^{i \frac{\pi}{4}}}{\sqrt{2} e^{-\mathrm{i} \frac{\pi}{4}}} x=e^{i \frac{\pi}{2}}=\mathrm{i}$
(10) $\sin (A+B)+\sin (A-B)$
(11) $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(12)
(a) $\sqrt{-8}=-2 \mathrm{i}, 2 e^{i \frac{\pi}{3}}, 2 e^{-\mathrm{i} \frac{\pi}{3}}$
(b) 2, $1+\sqrt{3} \mathrm{i}, 1-\sqrt{3} \mathrm{i}$

Test Yourself 12.2

(1) (a) $z_{1}=A e^{i\left(\omega t+\frac{\pi}{2}\right)}=A e^{i \omega t} e^{i \frac{\pi}{2}}=A i e^{i \omega t}$;
$z_{2}=3 A e^{i(\omega t+\pi)}=3 A e^{i \omega t} e^{i \pi}=-3 A e^{i \omega t}$
(b) $\left(z_{1}+z_{2}\right)=A e^{\mathrm{i} \omega t}(-3+\mathrm{i})=A e^{\mathrm{i} \omega t} \sqrt{10} e^{i \phi}$
where $\phi=\cos ^{-1}\left(-\frac{3}{\sqrt{10}}\right)=0.898 \pi \quad[=2.820 \mathrm{rad}]$
(c) $\left(x_{1}+x_{2}\right)=\sqrt{10} A \cos \{\omega t+0.898 \pi\}$
(2) (a) Using Newton's 2nd law in basic SI units the differential equation is:
$1.50 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-3.6 \frac{\mathrm{~d} x}{\mathrm{~d} t}-96 x$
which reduces to $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+k \frac{\mathrm{~d} x}{\mathrm{~d} t}+\omega_{0}{ }^{2}=0$,
where $\omega_{0}=\sqrt{\frac{96}{1.5}}=\sqrt{64}=8.0 \mathrm{~s}^{-1}$ and $k=\frac{3.6}{1.5}=2.4 \mathrm{~s}^{-1}$
(b) $\lambda^{2}+2.4 \lambda+64=0$
$\therefore \lambda=\frac{-2.4 \pm \sqrt{2.4^{2}-4 \times 64}}{2}=-1.2 \pm 7.91 \mathrm{i}$
$\therefore \operatorname{Re}(\lambda)=-1.2 ; \operatorname{Im}(\lambda)= \pm 7.91$
(c) $\omega_{1}=7.91, \therefore T=\frac{2 \pi}{\omega_{1}}=0.79 \mathrm{~s}$ (2 s.f.)
(d) If $e^{-1.2 t}=0.05 ; t=\frac{\ln 0.05}{-1.2}=2.5 \mathrm{~s}(2 \mathrm{s.f})=.3.1 \mathrm{~T}$.

So 3 complete cycles.

3 (a) (i) $Z_{\mathrm{S}}=R-\mathrm{i} X_{\mathrm{C}}=R-\frac{\mathrm{i}}{\omega C}$
(ii) $\quad \boldsymbol{Z}_{\mathrm{P}}=\frac{R\left(\mathrm{i} X_{\mathrm{C}}\right)}{R-\mathrm{i} X_{\mathrm{C}}}=\frac{R}{1+(\omega C R)^{2}}[1-\mathrm{i} \omega C R]$
(b) (i) $Z_{\mathrm{S}}=R-\mathrm{i} R=R \sqrt{2} e^{-\mathrm{i} \frac{\pi}{4}}$
(ii) $\boldsymbol{Z}_{\mathrm{P}}=\frac{R}{2}[1-\mathrm{i}]=\frac{R}{\sqrt{2}} e^{-\mathrm{i} \frac{\pi}{4}}$
(c) $\frac{I_{\mathrm{S}}}{I_{\mathrm{P}}}=\frac{Z_{\mathrm{P}}}{Z_{\mathrm{S}}}=\frac{1}{2}$; Phases the same [leading the pd by $\frac{\pi}{4}$]
(4) (a) (i) $\boldsymbol{Z}=R+\mathrm{i}\left(\omega L-\frac{1}{\omega C}\right)$
(ii) $Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$
(b) The minimum value of Z is when $\left(\omega L-\frac{1}{\omega C}\right)=0$,
$\therefore \omega_{0} L=\frac{1}{\omega_{0} C}, \therefore \omega_{0}=\frac{1}{\sqrt{L C}}$
At this frequency $Z=\sqrt{R^{2}+0}=\sqrt{R^{2}}=R$
(c) $\frac{\text { peak pd across } L}{\text { peak pd across } R}=\frac{I \omega_{0} L}{I R}=\frac{\omega_{0} L}{R}$
(d) If $\sqrt{2} R=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$, then $2 R^{2}=R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}$ $\therefore\left(\omega L-\frac{1}{\omega C}\right)^{2}=R^{2}$, so $\omega L-\frac{1}{\omega C}= \pm R \quad$ QED
(e) $\omega_{1} L-\frac{1}{\omega_{1} C}=-R$ and $\omega_{2} L-\frac{1}{\omega_{2} C}=+R$
(i) \therefore adding: $\left(\omega_{1}+\omega_{2}\right) L-\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2} C}=0$,

$$
\begin{aligned}
& \text { i.e. }\left(\omega_{1}+\omega_{2}\right)\left[L-\frac{1}{\omega_{1} \omega_{2} C}\right]=0 \\
& \therefore L-\frac{1}{\omega_{1} \omega_{2} C}=0 \text { leading to } \omega_{1} \omega_{2}=\frac{1}{L C}=\omega_{0}^{2}
\end{aligned}
$$

(ii) and subtracting $\left(\omega_{2}-\omega_{1}\right) L+\frac{\omega_{2}-\omega_{1}}{\omega_{1} \omega_{2} C}=2 R$.

$$
\text { but } \omega_{1} \omega_{2}=\frac{1}{L C} \text { so } 2 L\left(\omega_{2}-\omega_{1}\right)=2 R
$$

$$
\text { So } \frac{\omega_{2}-\omega_{1}}{\omega_{0}}=\frac{R}{\omega_{0} L}=\frac{1}{Q}
$$

(f) From (e)(ii) Q is inversely proportional to the fractional difference of the half power points related to the resonant frequency. So the sharper the resonance peak, the greater the value of Q.

