Maths for Physics Updated Edition

Answers

Test Yourself 1.1

- $0 V = kg m^2 s^{-3} A^{-1}$
- 2 [G] = $kg^{-1}m^3s^{-2}$
- **3** (a) $\varepsilon_0 = \frac{1}{4\pi} \frac{Q_1 Q_2}{Fr^2}$, so $[\varepsilon_0] = \frac{[Q_1][Q_2]}{[F][r^2]} = \frac{C \times C}{N \times m^2} = C^2 N^{-1} m^{-2}$
 - (b) Using C = A s and N = kg m s⁻², $[\varepsilon_0] = kg^{-1} m^{-3} s^4 A^2$
- 4 (a) [h] = J s
 - (b) $[h] = \text{kg } \text{m}^2 \text{s}^{-1}$
- **5** $[\mu_0] = H m^{-1} = kg m s^{-2} A^{-2}$, so $H = kg m^2 s^{-2} A^{-2}$
- 6 $F = [C] = kg^{-1} m^{-2} s^4 A^2$
- 2.5 MΩ [= 2.5 × 10⁶ Ω]
- 8 $\left[\frac{1}{\varepsilon_0\mu_0}\right] = \frac{1}{\mathrm{kg}^{-1}\,\mathrm{m}^{-3}\,\mathrm{s}^4\,\mathrm{A}^2 \times \mathrm{kg}\,\mathrm{m}\,\mathrm{s}^{-2}\,\mathrm{A}^2} = \mathrm{m}^2\,\mathrm{s}^{-2} = [\mathrm{c}^2]$ QED
- 9 (a) $[\sigma] = W m^{-2} K^{-4}$
 - (b) $[\sigma] = M T^{-3} \Theta^{-4}$
 - Note: L cancels out so $[\sigma]$ does not depend on L
- $\mathbf{10} \quad [W] = L \Theta$
- **(1)** $\Omega = [R] = \text{kg m}^2 \text{ s}^{-3} \text{ A}^{-2}$
- (a) $[c] = J kg^{-1} K^{-1}$
 - (b) $[c] = m^2 s^{-2} K^{-1}$
- **1** N s = (kg m s⁻²) × s = kg m s⁻¹
- Starting from the rhs and working in dimensions: $[p\Delta V] = \left[\frac{F}{A}\right] \times [\Delta V] = \frac{M L T^{-2}}{L^2} \times L^3 = M L^2 T^{-2} = [W] \quad QED$
- 10 Working in units

 $[p^2c^2] = N^2 s^2 \times m^2 s^{-2} = N^2 m^2$

- $[m^2c^4] = kg^2 m^4 s^{-4} = (kg m s^{-2})^2 m^2 = N^2 m^2$
- \therefore The right-hand side is homogeneous.
- $[E^2] = J^2 = (N m)^2 = N^2 m^2$

So the two sides have the same units, i.e the equation is homogeneous.

Working in dimensions:

Dimensions of the right side = $[nAve] = L^{-3} L^2 (L T^{-1}) (I T) = I$ = dimensions of the left side QED

- **1** 6.4 μ m s⁻¹
- ^(B) If $E_{k \max}$ is expressed in J then the units of both terms on the right must be J, i.e. $[\phi] = J$.

If $E_{k \max}$ is expressed in eV then $[\phi] = eV$.

() Working in dimensions: $[p] = \left[\frac{F}{A}\right] = M L T^{-2} L^{-2} = M L^{-1} T^{-2}$ $\left[\frac{1}{3}\rho c^2\right] = M L^{-3} (L T^{-1})^2 = M L^{-1} T^{-2}$. The two sides have the

same dimensions, hence the equation is homogeneous.

Working in units: $\left[\frac{h}{\lambda}\right] = \frac{J s}{m} = \frac{N m s}{m} = N s = [p]$, so the equation is homogeneous.

2 Working in dimensions: $[p] = M L^{-1} T^{-2}$; $[\rho] = M L^{-3}$;

$$\left[\sqrt{\frac{\gamma p}{\rho}}\right] = \sqrt{L^2 T^{-2}} = L T^{-1}$$

 $[c] = L T^{-1}$, so the two sides have the same dimensions, i.e, the equation is homogeneous.

- Working in units: From Q2, $[G] = kg^{-1} m^3 s^{-2}$. $\therefore \left[-\frac{GM_1M_2}{R} \right] = \frac{kg^{-1} m^3 s^{-2} kg kg}{m} = kg m^2 s^{-2} = [E]$ The two sides have the same dimensions, i.e. the equation is
- homogeneous. **a** = $\frac{1}{2}$; $b = -\frac{1}{2}$, i.e. $v = c \sqrt{\frac{K}{2}}$. Compare this with Q21.

a = b =
$$-\frac{1}{2}$$
; c = $\frac{3}{2}$, i.e. $T = k\sqrt{\frac{r^3}{GM}}$. Compare this with Kepler's 3rd law.

3 $x = z = \frac{1}{2}$; $y = -\frac{1}{2}$, i.e. $c = k\sqrt{\frac{Tl}{m}}$. In fact it is usually written $c = \sqrt{\frac{T}{\mu}}$, where μ is the mass per unit length of the wire. The dimensionless constant k = 1.

Test Yourself 2.1

:..

0	23	2	-11	8	16	4	52	6	306
6	21 000	0	600	8	42	9	520	10	264
0	75	12	40	B	-3	14	5	ß	3.33
6	6	0	0.20	18	-0.5	19	±12	20	±6
2)	2	0	-2.1726	23	±44.3	24	1.25	25	8

Test Yourself 2.2

Updated Edition

Test Yourself 2.3

0	3 <i>x</i> + 6	2	20x + 24	3	a – 3
4	20 + 10 <i>a</i> + 15 <i>b</i>	6	xy - 2x + 3y - 6	6	$x^2 - 4y^2$
0	$x^2 + 10x + 25$	8	$4 - 4y + y^2$	9	$2p^2 + pq - 3q^2$
10	$25a^2 - 60ab + 36b^2$	2		0	$-9 + 6x - x^2$
12	ax – ab	ß	$x^2 - a^2$	1	$x^2 - 4ax + 4a^2$
₲	$z^2 + b^2$	16	$z^2 + b^2$	0	4zb
18	$t^4 + 2t^2 + 1$	19	$t^4 - 1$	20	$t^3 - 2t^2 + t - 2$
2)	$a^3 + a^2b - ab^2 - b^3$	2	a – b	23	a + b
24	1	25	x – c		

Test Yourself 2.4

1	5.4	2	12.5	3	960
4	4.44	6	10	6	26.7
0	3.33	8	6.66	9	30
10	487	0	12	12	5.97×10^{24}
B	1.77×10^{-3}	14	1.96×10^{-5}	❻	2.19
16	1245	0	314	18	1.89×10^{-7}
19	9.95×10^{26}	20	25.9	21	2.5
22	1.05	23	20	24	-24
25	1.98×10^{8}				

Test Yourself 3.1

- $x = \pm 4$
- $x = \pm 0.2$
- *t* = 0 or 7
- t = 0 or 30
- *t* = 0 or 10.2
- $v = \pm 77.5$
- $v = \pm 3460$
- 8 x = +7
- 9 $l 0.24 = \pm 5.57$, $\therefore l = -5.13$ or 5.61
- $v + 50 = \pm 70.7$, $\therefore v = -120.7$ or 20.7 1
- $v 5 = \pm 25.2$, $\therefore v = -20.2$ or 30.2 0

- x = 1 or -2
- B x = -2.55 or -0.79
- **1** *t* = 0.76 or 13.24
- **(b)** t = 0.43 or 11.8
- 6 *t* = 6.95 or 18.05
- $x = \pm 2$ m. NB. units!
- $v = \pm 1000 \text{ m s}^{-1}$
- B t = 2.04 s. NB. The 0 solution is incorrect as the question asked for the time at which the stone returned to the ground.
- 20 57 km s⁻¹.
- 2) t = 1.36 s [ignore the negative root].
- **2** 3500 m, ignoring the 0 root.
- **23** Total distance from centre = 11530 km; *h* = 5150 km.
- 24 20 m s⁻¹.
- 25 2.70 s.

Test Yourself 3.2

- a = 3.5; u = 10
- r = 0.5; E = 2.0
- a = 1.5; u = 4.0
- r = 3.0; E = 2.25
- **5** a = 4; v = 24
- 6 v = 15; m = 10
- $k = 25; l_0 = 0.2$
- 8 $u = \pm 6; a = 2$
- 9 $a = 0.75 \text{ m s}^{-2}$; $u = 2.5 \text{ m s}^{-1}$. [NB. units]
- **1** $a = 0.45 \text{ m s}^{-2}; u = \pm 6.78 \text{ m s}^{-1}.$
- (1) $r = 1.5 \Omega; E = 6.0 V$
- **1** $u = 8 \text{ m s}^{-1}$; $a = 3 \text{ m s}^{-2}$.
- (a) $I_1 = 0.0978 \text{ A}; I_2 = 0.0434 \text{ A}$
 - (b) $V_{2V} = 1.90 \text{ V}; V_{1.5V} = 1.41 \text{ V}$
 - (c) $V_{10}\Omega = 1.41$ V = the pd across the 1.5 V cell as expected.
- E = 12 V; r = 12 Ω.
- **(b)** Solution 1: $v_1 = 5 \text{ m s}^{-1}$; $v_2 = 8 \text{ m s}^{-1}$. Solution 2: $v_1 = 7 \text{ m s}^{-1}$; $v_2 = 4 \text{ m s}^{-1}$
- **6** $v_1 = -\frac{4}{3}$ m s⁻¹; $v_2 = \frac{8}{3}$ m s⁻¹. The other solution with $v_1 = 4$ m s⁻¹ and $v_2 = 0$ represents a near miss!
- **1** $R = 6.85 \Omega; \varepsilon = -0.023 V$
- (B) $R = 4.80 \Omega$; ε = 0.013 A
- (1) $\mu = 0.053 \text{ kg}; k = 25.2 \text{ N m}^{-1}$
- 2 $h = 2.531 \text{ m}; g = 9.82 \text{ m s}^{-2}$.
- $u = 10 \text{ m s}^{-1}$; $a = 2.0 \text{ m s}^{-2}$. 2
- Solution 1: $u = 15 \text{ m s}^{-1}$; $a = 5 \text{ m s}^{-2}$ (constant acceleration). ത Solution 2: $u = 25 \text{ m s}^{-1}$; a = 0 (constant velocity).

Answers

To 1st order: $\sqrt{1+x} - \sqrt{1-x} = 1 + \frac{1}{2}x - (1 - \frac{1}{2}x) = x$. 16 To 1st order: $(1 + x)^n - \frac{1}{(1 + x)^n} = (1 + nx) - (1 - nx) = 2nx$ Ø **(B)** To 1st order: $(x + a)^n = x^n \left(1 + \frac{a}{x}\right)^n = x^n \left(1 + \frac{na}{x}\right) = x^n + nax^{n-1}$ This will be a good approximation if *na* << 1 **1** To 1st order: $(x + a)^n - x^n = nax^{n-1}$ (a) AC = $\sqrt{1.000^2 + 0.020^2} = (1 + 0.0004^2)$ 20 $= 1 + \frac{1}{2} \times 0.0004 - 1.0002$ to 1st order. (b) AC = 1.00019998 (a) $S_1P = \sqrt{1^2 + 0.00225^2} = (1 + 5.0625 \times 10^{-6})^{0.5}$ $= 1 + 2.53 \times 10^{-6} \,\mathrm{m}$ $S_2P = \sqrt{1^2 + 0.00175^2} = (1 + 3.0625 \times 10^{-6})^{0.5}$ $= 1 + 1.53 \times 10^{-6} \,\mathrm{m}$ \therefore S₁P - S₂P = 1.00 × 10⁻⁶ m. (b) $1.00 \times 10^{-6} \text{ m}$ 2 $S_1 P = \sqrt{D^2 + \left(x + \frac{d}{2}\right)^2} = D\left(1 + \frac{\left(x + \frac{d}{2}\right)^2}{D^2}\right)^{\frac{1}{2}} = D\left(1 + \frac{\left(x + \frac{d}{2}\right)^2}{2D^2}\right)^{\frac{1}{2}}$ $S_2 P = \sqrt{D^2 + \left(x - \frac{d}{2}\right)^2} = D \left(1 + \frac{\left(x - \frac{d}{2}\right)^2}{D^2}\right)^{\frac{1}{2}} = D \left(1 + \frac{\left(x - \frac{d}{2}\right)^2}{2D^2}\right)^{\frac{1}{2}}$ $\therefore S_1 P - S_2 P = \frac{\left(x + \frac{d}{2}\right)^2}{2D} - \frac{\left(x - \frac{d}{2}\right)^2}{2D} = \frac{x^2 + xd + \frac{d^2}{4} - \left(x^2 - xd + \frac{d^2}{4}\right)}{2D} = \frac{xd}{D}$ This leads on to the Young Fringes formula. 23 To 2nd order: $\sqrt{1+x} + \frac{1}{\sqrt{1+x}} = \left(1 + \frac{1}{2}x + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2 \times 1}x^2\right) + \left(1 - \frac{1}{2}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2 \times 1}x^2\right)$ $= 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + 1 - \frac{1}{2}x + \frac{3}{8}x^{2}$ $= 2 + \frac{1}{4}x^2$ 24 To 2nd order: $(1+x)^n + (1+x)^{-n} = 1 + nx + \frac{n(n-1)}{2}x^2 + \left(1 - nx + \frac{n(n-1)}{2}x^2\right)$ $= 2 + n^2 x^2$ With n = 4 and x = 0.1 this gives 2.16. The calculator value is 2.15 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{\sqrt{1+x^2}} = x \left(1 - \frac{1}{2}x^2\right) x \text{ to 3rd order.}$ 25 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{1 + x^2}} = 1 - \frac{1}{2}x^2$ to 3rd order. $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = x \text{ exactly!}$ Test Yourself 4.1 (b) 25 **1** (a) 5 (c) 0.2 or $\frac{1}{5}$ (d) 0.04 or $\frac{1}{25}$ (e) 625

(a) 4 (b)
$$0.25/\frac{1}{4}$$
 (c) 8
(d) 128 (e) $0.125/\frac{1}{8}$

0

Updated Edition

Answers

(a) $a^{\frac{1}{4}}/a^{0.25}$ (b) $a^{-\frac{1}{4}}/a^{-0.25}$ (c) $a^{\frac{2}{3}}/a^{0.667}$ 8 (e) $a^{-\frac{3}{2}}/a^{-1.5}$ (d) $a^{\frac{2}{5}}/a^{0.4}$ (b) 15 4 (a) 15 (c) 0.16 (d) 2.5 6 p = -26 $p = \frac{3}{2}$ $p = \frac{3}{2}, k = \frac{1}{6\sqrt{\pi}}$ $R = \frac{16\rho V}{\pi^2 d^4}$, i.e. $k = \frac{16\rho V}{\pi^2}$ and n = -4(a) $2000 \times L_{\odot} = 8 \times 10^{29} \text{ W}$ 9 (b) $0.0081 \times L_{\odot} = 3 \times 10^{24} \text{ W}$ **1** $R = 5I^{-\frac{2}{3}}$, i.e. c = 5 and $n = -\frac{2}{3}$ 0 (a) 0.6020 (b) -1.3980 (c) 0.9030 (d) 2.3010 (e) 0.3980 [Part (e) $\log 2.5 = \log \frac{10}{4} = \log 10 - \log 4 = 1.0000 - 0.6020$] 1 (a) 3.170 (b) -1.585 (c) 2.585 (d) 0.585 (e) 1.262 [Part (e) $\log_3 4 = 2 \log_3 2 = \frac{2}{\log_2 3}$] B (a) 2.0 (b) -1.0 (c) $0.5 / \frac{1}{2}$ (e) $-1.25 / -\frac{5}{4}$ (d) $1.5 / \frac{3}{2}$ (a) $0.5 / \frac{1}{2}$ (b) $2.5 / \frac{5}{2}$ (c) -3(d) $0.25 / \frac{1}{4}$ (e) 2.16 $\left[\text{Part (e)} \log_4 20 = \log_4 2 + \log_4 10 = 0.5 + \frac{1}{\log_{10} 4} = 0.5 + \frac{1}{2 \log 2} \right]$ ß (a) 5 log 2 (b) -log 2 $(d) -\log 2$ (c) 0 (a) $2 \ln 2 + 1$ (b) $3 \ln 2 + 1$ (c) $5 \ln 2 - 1$ 6 (d) $4 \ln 2 - 1$ (e) $\frac{1}{2} \ln 2 - 2$ (a) x = 0.90 (b) x = -0.90 (c) x = 4.61Ø (d) x = 7.97 (e) x = 403(a) Remember that $e^{\ln b} = b$ 13 $x \ln a = \ln a^x$: $e^{x \ln a} = e^{\ln a^x} = a^x$ QED (b) $2^{\pi} = e^{\pi \ln 2} = e^{3.142 \times 0.6931} = 8.82$ Ð (a) x = 16 (b) $x = \pm 8$ (c) $x = 6.87 \times 10^{10}$ (d) $x = \pm \frac{1}{2}$ (e) x = 36(a) $L_1 = 10 \log \frac{1}{10^{-12}} = 10 \log 10^{12} = 10 \times 12 = 120 \text{ dB SIL}$ (b) $L_1 = 10 \log (10^{12} I)$ (1) Consider an increase of 3 dB; let the sound intensity be kI Then $L_1 + 3 = 10 \log (10^{12} kI)$ $\therefore L_1 + 3 = 10 \log k + 10 \log (10^{12} l)$ Subtract equation (1). \therefore 3 = 10 log k. $\therefore \log k = 0.3, \therefore k = 2.00$ [3 s.f.] (a) 1.980×10^6 s (b) 96 Bq (c) 11.7×10^6 s. (a) $f_{35} = 1.55 \text{ Hz}; f_{45} = 1.06 \text{ Hz}$ 2 (b) Substituting the values of *l* and *f* into $f = kl^n$:

 $1.55 = k \times 0.35^{n}$ (1) and $1.06 = k \times 0.45^{n}$ (2)

Dividing equation (1) by equation (2) \rightarrow 1.462 = 0.778^{*n*} Taking natural logs: $\rightarrow \ln 1.462 = n \ln 0.778$ \rightarrow *n* = -1.51 [log₁₀ can be used here instead] Substituting into equation (1) $\rightarrow k = \frac{1.55}{0.35^{-1.51}} = 0.32$ Alternative method: take logs of equations (1) and (2) and solve the resulting simultaneous equations for kand n. Plot a graph of ln *f* against ln *l* [or log *f* against log *l*]. (c) The graph should be a straight line with a negative gradient. The value of *n* is the gradient. The intercept on the log *f* axis is the value of log *k*, so $k = 10^{\text{intercept}}$. ß (a) Graph of ln *C* against *x* should be plotted [units of *C* and *x* can remain in min⁻¹ and cm]. The gradient of the graph should be ~ -0.49 and the intercept on the ln *C* axis \sim 6.3. $\therefore \frac{1}{r} = 0.49$ giving a value of L = 2.04 cm $\ln C_0 = 6.3 \therefore C_0 = 540 \text{ min}^{-1}$ (b) $25 = 540e^{-\frac{x}{2.04}}$. $\therefore -\frac{x}{2.04} = \ln\left(\frac{25}{540}\right) \rightarrow x = 6.3 \text{ cm}.$ [i.e. an additional shielding of 5.8 cm] 2 (a) A graph of $\ln I$ against $\ln V$ has a gradient of ~0.547 and intercept of ~ -0.729 on the ln *I* axis. These give *n* = 0.55 [2 s.f.] and *k* = 0.48 [2 s.f.] (b) $c = k^{-1} = 2.08$. m = 1 - n = 0.45(a) $n = \frac{60}{8} = 7.5$. $\therefore A = 800 \times 2^{-7.5} = 4.42 \text{ kBq}$ (b) $\lambda = \frac{\ln 2}{8} = 0.0866 \text{ day}^{-1}.$ $\therefore A = 800e^{-0.0866 \times 100} = 0.138 \text{ kBg} = 138 \text{ Bg}.$ (c) (i) Gradient = $-\ln 2$; intercept = $\ln A_0$ = 6.68 [with A in kBg] (ii) Gradient = $-\lambda = 0.0866 \text{ day}^{-1}$; intercept = $\ln A_0$ i.e. same as in (i). Test Yourself 5.1 . 140° 65 8 4 35° <u>30° 12</u>0° all 60 55

110°

60% 120°

(a) 173 mm

(a) 47.7 m

(a) 35.8 cm

(a) 180 mm

x = 150 m; v = 260 m

(a) height = 140 m

(a) 48.2°

1015 m

(a) 34.8°

(a) 35.2°

n = 1.58

n = 1.39

n = 1.40

But $\sin^2\beta = 1 - \cos^2\beta$

302

60

60°

ß

0

0

0

B

4

ß

6

Ø

ß

Ð

20

2

22

23

Updated Edition

Answers

14 cm

45°

y = -0.4x + 30

 $15^2 = 25^2 + 35^2 - 2 \times 25 \times 35 \cos \theta$

 $\therefore \theta = 21.8^{\circ}$

 $\therefore \phi = 21.8^{\circ}$ [alternate angles]

 $\therefore y = 35 \sin 21.8^{\circ} = 13.0 \text{ cm}$

and $x = 35 \cos 21.8^{\circ} = 32.5 \text{ cm}$.

- **B** V = -0.2I + 6.0
- $W = 4.14 \times 10^{-15} f 0.70$
- **(b)** v = 0.8t + 16
- **1**6 *F* = 25*l* − 5.0
- **1** *V* = −1.33*I* + 3.07
- **1** v = -0.2t + 26
- **1**9 *F* = 0.5*l* − 3
- $0 V = 5 \times 10^{-15} f 1.5$
- **2** $V = 9.6 4.0I, E = 9.6 \text{ V}; r = 4.0 \Omega$
- **2** $k = 1.06 \text{ N cm}^{-1}$, $l_0 = 4.42 \text{ cm}$
- ² $a = 8 \text{ m s}^{-2}$; $u = 11600 \text{ m s}^{-1}$ [or 0.008 km s⁻² and 11.6 km s⁻¹]
- **2** [Gradient = 4.2×10^{-15} [V s], intercept = -0.60 [V]], leading to $h = 6.7 \times 10^{-34}$ J s and $\phi = 9.6 \times 10^{-20}$ J [= 0.6 eV]

Test Yourself 6.2

The solutions given are the least squares fit solutions. For graphs drawn freehand, slightly different, but equally acceptable, answers will be obtained.

- **1** Gradient $-1.0 [\Omega]$; intercept 6.12 [V]. So emf = 6.12 V; internal resistance = 1.0Ω
- **2** Gradient 0.21 [m s⁻²], intercept 3.63 [m s⁻¹]. So initial velocity = 3.63 m s^{-1} ; acceleration = 0.21 m s^{-2} .
- Gradient 0.228 [N cm⁻¹]; intercept –1.13 [N]. So spring constant = 0.228 N cm⁻¹, unloaded length = 4.9 cm.
- Gradient 0.0036 [atm °C⁻¹], intercept 0.945 [atm]; So $p_0 = 0.945$ atm and absolute zero (from data) = -263 °C.
- **6** Gradient -0.0469 [V mA⁻¹]; intercept 10.5 [V]; Emf = 10.5 V; internal resistance = 47 Ω .
- The graph of √s against *t* is a straight line with a gradient 1.14 and an intercept of 0.073 on the √s axis [LSF]. This is close enough to a zero intercept to verify the relationship. The acceleration is 2× gradient² = 2.6 m s⁻².
- **O** Graph v^2 against *s*. It is straight with gradient 0.562 and intercept 404. The acceleration $a = \frac{1}{2} \times \text{gradient} = 0.28 \text{ m s}^{-2}$. The intercept is u^2 so $u = 20 \text{ m s}^{-1}$.
- Image: Plot f against 1/l on a restricted axis [e.g. 240 520 Hz and $2.4 5.0 \text{ m}^{-1}$]. Other possibilities are 1/f against l or the axis may be the other way around. Using f v 1/l the intercept on the f axis is 1.2 Hz [LSF] which is close to zero and hence consistent with the relationship. The gradient is $c/2 = 104 \text{ [m s}^{-1}$], so $c = 208 \text{ m s}^{-1}$.
- As in 6.5.2 the graph should be *l* against 1/*f*. The gradient is *c*/4 and the intercept -ε. The graph is straight with gradient 8580 [cm s⁻¹] and intercept -1.3 [cm] giving the speed of sound as 34320 cm s⁻¹ [342 m s⁻¹] and end correction 1.3 cm.
- A graph of T^2 against *l* should be straight with a gradient of $4\pi^2/g$ and intercept $4\pi^2 \varepsilon /g$. The graph has a gradient of 4.11 [s² m⁻¹] and intercept 0.082 [s²]. This gives g = 9.6 m s⁻² and $\varepsilon = 2$ cm.

- **1** A graph of *d* against $1/\sqrt{R}$ should be straight with gradient \sqrt{k} and intercept $-\varepsilon$. The graph has a gradient of 236 and an intercept on the *d* axis of -1.8. This gives a value for *k* as 56 000 cpm cm², and ε as 1.8 cm.
- A graph of T^2 against l^2 should be straight with gradient $\frac{2m}{k}$ and intercept $\frac{I}{k}$ on the T^2 axis. The graph is straight with gradient 5600 [s² m⁻²] and intercept 28.5 [s²]. With m = 0.1 kg this gives a value of k of 3.6 × 10⁻⁵ kg m² s⁻² [or, N m rad⁻¹] and $I = 1.0 \times 10^{-3}$ kg m².
- **(b)** A graph of T^2y against y^2 should be a straight line with gradient $\frac{4\pi^2}{g}$ and intercept $\frac{4\pi^2k^2}{g}$ on the T^2y axis. The graph is a straight line of gradient 4.00 [s² m⁻¹] and intercept 0.76 [s² m] on the T^2y axis. This gives g = 9.87 kg m⁻² [or N kg⁻¹] and k = 0.43 m.
- **(2)** A graph of $\frac{1}{V}$ against $\frac{1}{R}$ should be straight with gradient $\frac{r}{E}$ and intercept $\frac{1}{E}$ on the $\frac{1}{V}$ axis. The graph is straight with a gradient of 0.219 [Ω V⁻¹] and intercept 0.103 [V⁻¹]. This gives a values of *E* as 9.7 V and *r* as 2.1 Ω .
- **b** A graph of $\frac{1}{v}$ against $\frac{1}{u}$ [or vice versa] should be a straight line of gradient -1 with an intercept on either axis of $\frac{1}{f}$. The graph has a gradient of -1.00 as predicted and an intercept of 0.0679 on the $\frac{1}{v}$ axis, giving a value for *f* of 14.7 cm.
- **(b)** The graph of $\sin \theta_2$ against $\sin \theta_1$ is straight with a gradient of 0.803 and an intercept of 0.0014 on the $\sin \theta_2$ axis, which is consistent with passing through the origin. Hence $\sin \theta_1 \propto \sin \theta_1$. The speed of light in glass is 0.803 × the speed in water.

Speed of light in water = $\frac{3.00}{1.33} \times 10^8 \text{ m s}^{-1}$. This gives the speed of light in glass as $1.81 \times 10^8 \text{ m s}^{-1}$.

Data Exercise 6.1

 E_p minimum = -0.245, at a separation of 1.12-1.13

Data Exercise 6.2

The LSF graph has a gradient of $1.31 \text{ [m s}^{-2}\text{]}$ and intercept of 0.006 [m] on the *s* axis. This is consistent with a constant acceleration of 2.6 m s⁻² and initial value of s = 0.

Test Yourself 6.3

8

6

- 4 (a) The function is symmetrical about x = 0 and is >0 for all values of *x*. As $x \to \pm \infty$, $g \to \pm \infty$. The magnitude of the gradient increases as |x| increases.
 - (b) Minimum at (0, 0.2)
 - (a) (i) Minimum at (0, -5) (ii) Points of inflexion at $\left(\pm \frac{1}{\sqrt{5}}, -\frac{5}{2}\right)$; *x*-axis is an asymptote
 - (iii)

- The graph has two vertical asymptotes, at x = -d and +d. For x < -d the potential function is as the graphs in Qs 7 and 8 (to the eye). For -d < x < d the potential function is the negative of those between the asymptotes in Qs 7 and 8. It passes through (0, 0) which is also the point of inflexion. For x > +d the potential function is as in Q7 and Q8 to the right of the + asymptote.
- 1 (a) *a* and *b* are both zero and c = k. The solution with N(0) = 0 is $N = kt^2 e^{-\lambda t}$
 - (b) Peak when $t = \frac{2}{\lambda}$ Points of inflexion when $t = \frac{2 \pm \sqrt{2}}{\lambda}$ Note that the gradient is zero when t = 0.

Mathematics for Physics

- (b) Amplitude = $Ae^{-\lambda t} = Ae^{-5} \sim 0.0067 A$
- (c) $v = Ae^{-\lambda t} \left[\omega \cos \omega t \lambda \sin \omega t \right]$

(d)
$$v = A \sqrt{\omega^2 + \lambda^2} e^{-\lambda t} \cos \left(\omega t + \tan^{-1} \frac{\lambda}{\omega}\right)$$

- (e) Fractional energy loss per cycle = $\left(1 e^{-\frac{4\pi\lambda}{\omega}}\right)$
- 12

- The turning points are 0.079 s earlier than those of the pure ß $\cos 0.2 \pi t$ function.
- (a) Minimum at (0,0); maximum at $\left(-2, \frac{4}{2}\right)$ 0
 - (b) Two other points of inflexion: at $x = \frac{-3 \pm \sqrt{5}}{2}$
- At the turning point, $v = \frac{3\sqrt{2} 6}{24}$

Test Yourself 7.1

- (a) 18.0 km N56°W (b) 70.7 N due E
 - (c) 55.9 N, N63.4°W (d) 44.7 N, S26.6°E
 - (e) 91.8 N, N15.6°E
 - (f) 17.3 m s⁻², N60°E.
 - (g) 100 N, N30°E.
 - (h) 72.1 N, E33.7°S.
- 20.6 m s^{-1} at $14.0 \circ$ to the horizontal.
- (a) Both components 7.07 N
 - (b) Down component = 453 N; up component = 211 N.
 - (c) N component = 2.74 km; W component = -7.52 km
- (a) F = 20 N; G = 17.3 N*F* = 117 N; *G* = 110 N 4 (b)
- $F = 70 \text{ N}; \theta = 21.8^{\circ}$
- 108 N; 21.8° below the 50 N force.
- (a) $\mathbf{F} = -2\mathbf{i} 13\mathbf{j}$ 7
 - (b) $\mathbf{F} = 13.2 \text{ N}$ at 8.75° to the left of the minus **j** direction
- (a) a = -28i 4j8
 - (b) $a = 28.3 \text{ m s}^{-2}$, W 8.1° S
- (a) s = 20i + 72j
 - (b) v = 10i + 32j
 - (c) $v = 33.5 \text{ m s}^{-1}$ at 72.6° from the i vector.
- 0 (a) Over 0.2 s, $\bar{a} = 120 \text{ m s}^{-2}$; over 0.02 s, $\bar{a} = 124.9 \text{ m s}^{-2}$. both towards centre at midpoint of the time.
 - (b) $a = \frac{v^2}{r}$ gives $a = 125 \text{ m s}^{-2}$ towards centre. The mean values approach 125 as $\Delta t \rightarrow 0$.

T = 180 N. (a) 85.4 N (b) 58.5 m $F = mg \sin \theta$; $C = mg \cos \theta$ (b) $\theta_{max} = \tan^{-1} 0.2 = 11.3^{\circ}$ $a = 1.51 \text{ m s}^{-2}$ (a) $\theta = 66.9^{\circ}$ (b) F = 230 N(a) 40**i** + 10**j** (b) 70i - 44j (c) Both 20.6 knot (d) 14i - 8.8j (e) 16.5 knot, E 32° S (a) $13\,000\,\mathrm{m\,s^{-1}}$ (b) 5000i + 8400j + 7200k (c) $12\,140\,\mathrm{m\,s^{-1}}$ (d) [In km] 180 000i + 367 200j + 129 600k (e) 429 000 km (a) $\mathbf{a} = -3.7\mathbf{j} \, [\text{m s}^{-2}]; \mathbf{v} = 30\mathbf{i} + 3\mathbf{j} \, [\text{m s}^{-1}]; \mathbf{s} = 300\mathbf{i} + 215\mathbf{j} \, [\text{m}]$ (b) 30.1 m s^{-1} at 5.7° [0.1 rad] above the horizontal (c) 50 m s^{-1} at 53.1° below the horizontal (d) 3i (a) Position = 70.6**i** + 70.4**j**, i.e. height 70.4 m and horizontal distance 70.6 m [Position from base of cliff] Velocity, $\mathbf{v} = 34.64\mathbf{i}$ i.e. 34.64 m s^{-1} horizontal (b) Position = 202 m from base of cliff; $\mathbf{s} = 202\mathbf{i}$ Velocity, v = 34.64i - 37.2j; i.e. 50.8 m s⁻¹ at 47.1° below the horizontal. **20** (a) p = 47j(b) $v_{COM} = 5.875j$ (c) KE = 209J **(a)** p = 24i - 9j(b) $\mathbf{v}_{COM} = 3\mathbf{i} - 1.125\mathbf{j}$ (c) 109.5 J (a) $\mathbf{p}_1 = \mathbf{p}_0 + \mathbf{F}t = 23\mathbf{i} + 25\mathbf{j}$ (b) Easiest method uses $E_k = \frac{p^2}{2m} \rightarrow \Delta E_k = 280 \text{ J}$ **23** (a) $u = \frac{3}{2}i + \frac{5}{2}j; a = i + j$ (b) s = 65i + 75j(c) **F.s** = $(2i + 2j) \cdot (65i + 75j) = 130 + 150 = 280 J$ Comment: **F.s** is the work done by the force which is the change in kinetic energy, i.e. the answer agrees with Q22 (b)

- Image: Weighted States and Amage: Weighted States and Amage: Weighted States and Amage: A
- **25** (a) $\tau_1 = 30$ **k**; $\tau_2 = -16$ **k**
 - (b) -14**k**
 - (c) $\mathbf{F}_{3} = -4\mathbf{i} 4\mathbf{j}$
 - (d) $(x\mathbf{i} + y\mathbf{j}) \times \mathbf{F}_3 = (x\mathbf{i} + y\mathbf{j}) \times (-4\mathbf{i} 4\mathbf{j}) = (-4x + 4y)\mathbf{k}$ This cross product must be -14k $\therefore -4x + 4y = -14$, i.e. x - y = 3.5

Updated Edition

1

Ø

Ð

2

(c) 15.0

Test Yourself 8.1

- **1** (a) 0.909 (b) -23.4
 - (a) -5.488 rad; -0.795 rad; 0.795 rad; 5.488 rad
 - (b) -2.214 rad; -0.927 rad; 4.069 rad; 5.356 rad
 - (c) -3.094 rad; 1.094 rad
- **3** 6.79 × 10⁻⁵ rad
- 4 (a) $1 \text{ pc} = 3.08 \times 10^{13} \text{ km}$
 - (b) 1 pc = 3.25 l-y
- **5** 0.015%

9

- 6 (a) $x = 10 \cos 2\pi t$
 - (b) $x = -10 \cos 2\pi t$ or $x = 10 \cos(2\pi t \pm \pi)$
 - (c) $x = 10 \sin 2\pi t$ or $x = 10 \cos \left(2\pi t \frac{\pi}{2}\right)$
 - (d) $x = 10 \sin(2\pi t 1.8\pi)$ or $x = 10 \cos(2\pi t 0.3\pi)$
 - NB There are other ways of expressing these functions
- (a) $v_{\text{max}} = 20\pi = 62.8 \text{ cm s}^{-1}$; $a_{\text{max}} = 40\pi^2 = 396 \text{ cm s}^{-2}$
 - (b) for 6(a): v_{max} at -0.25 s and 0.75 s; a_{max} at -0.5 s and 0.5 s for 6(b): v_{max} at 0.25 s and -0.75 s; a_{max} at -1 s, 0 and 1 s for 6(c): v_{max} at -1 s, 0 and 1 s; a_{max} at -0.25 s and 0.75 s for 6(d): v_{max} at -0.1 s and 0.9 s; a_{max} at -0.35 s and 0.65 s

8
$$\omega = \sqrt{\frac{k}{m}} = \sqrt{50} = 7.07 \text{ s}^{-1}; f = \frac{\omega}{2\pi} = 1.125 \text{ Hz}; T = \frac{1}{f} = 0.889 \text{ s};$$

 $A = 12 \text{ cm}$

- () $x = 12 \cos 7.07t; v = -85 \sin 7.07t; a = -600 \cos 7.07t$ [in cm; again there are several ways of writing these, e.g. $v = 85 \cos(7.071t + \frac{\pi}{2})$]
- **(1)** $x = 2.82 \text{ cm}; v = 82.5 \text{ cm s}^{-1}; a = -141 \text{ cm s}^{-2}.$
- **1** 0.556 s, 0.778 s, 1.444 s and 1.667 s
- B K.E = $\frac{1}{2}mv^2$ = $\frac{1}{2}$ × 0.5 × (0.849 sin 7.071*t*)² = 0.176 J P.E. = $\frac{1}{2}kx^2$: Extension = $\frac{mg}{k}$ – 0.0187 = 0.178 m ∴ PE = 0.396 J

(a) Max velocity = $A\omega = 2.0 \times 10 = 20 \text{ m s}^{-1}$. This occurs at t = 0.

:. K.E (0) = $\frac{1}{2} \times 2 \times 20^2 = 400$ J. This is the maximum K.E.

- ⓑ (a) −0.192 s; −0.058 s; 0.008 s; 0.142 s.
 - (b) -0.196 s; -0.154 s; 0.004 s; 0.046 s
- (a) $I = 0.12 \cos 200\pi t$
 - (b) (i) V = 3.71 V, (ii) I = 0.037 A, (iii) P = 0.138 W

(c) (i)
$$V_{\rm rms} = 8.49$$
 V, (ii) $I_{\rm rms} = 0.0849$ A, (iii) $\langle P \rangle = 0.720$ W.

(a) (i)
$$X_c = \frac{1}{\omega C} = 159 \Omega$$
, (ii) $I_0 = \frac{V_0}{X_c} = 0.075 \text{ A}$
(b) $I = 0.075 \cos\left(200\pi t + \frac{\pi}{2}\right)$

- (c) I = -0.071 A
- **B** (a) $I = 0.191 \cos\left(200\pi t \frac{\pi}{2}\right)$
 - (b) I = 0.182 A
- **D** (a) (i) $Z = \sqrt{100^2 + 159^2} = 188 \Omega$,

(ii)
$$I_0 = 0.064 \text{ A},$$

(iii) $V_0 = 6.4 \text{ V}; V_0 = 10.2 \text{ V}$

(b)
$$V = \sqrt{10.2^2 + 6.4^2} = 12 \text{ V}$$

$$\omega = 200 \pi \text{ s}^{-1}$$

 $V_{\text{R}} = 6.4 \text{ V}$
 $V_{\text{C}} = 10.2 \text{ V}$
 $I = 0.064 \text{ A}$

- (c) $\theta = \tan^{-1}\left(\frac{10.2}{6.4}\right) = 1.01 \text{ rad}$
- (a) X is a resistor because V is in phase with I; Y is a capacitor because I leads V by 90°.

(b)
$$R = \frac{V_R}{I} = \frac{12}{2 \times 10^{-3}} = 6 \text{ k}\Omega; \frac{1}{\omega C} = \frac{V_C}{I}$$

 $\therefore C = \frac{I}{\omega V_C} = \frac{2 \times 10^{-3}}{500 \times 6} = 0.67 \,\mu\text{F}/670 \,\text{nF}$

(c) Applied voltage = $\sqrt{12^2 + 6^2}$ = 13.4 V.; angle = 0.464 rad (= 26.6°) (a) V_x is unchanged at 12 V because resistance is constant.
 V_y is halved to 3 V because capacitor reactance is inversely proportional to frequency.

(b)
$$V = 12.4 \text{ V}; \phi = 0.245 \text{ rad} (14.0^{\circ})$$

2 Method:
$$X_c = \frac{1}{250 \times 0.67 \times 10^{-6}} = 6000 \Omega$$

 $Z = \sqrt{R^2 + X^2} = \sqrt{6^2 + 6^2} = 8.49 \text{ k}\Omega$

:
$$V_{\rm R} = 9.48 \text{ V}; V_{\rm C} = 9.48 \text{ V}; V = 13.4 \text{ V}$$

(a) Method: $V_{\rm R} = IR = 0.1 \times 470 = 47 \text{ V};$ $V_{\rm C} = \frac{1}{\omega C} = \frac{0.1}{500 \times 2.5 \times 10^{-6}} = 80 \text{ V}$

- (b) $V = \sqrt{47^2 + (120 80)^2} = 61.7 \text{ V}$
- (c) $\langle P \rangle = I^2 R \text{ [rms current]} = 0.1^2 \times 470 = 4.7 \text{ W}$ [or $V_{\text{R}}I = 47 \times 0.1 = 4.7 \text{ W}$]

We the d:
$$X_L = \omega L = 2\pi \times 100 \times 2.4 = 1510 \Omega$$

 $X_C = \frac{1}{\omega C} = \frac{1}{2\pi \times 100 \times 2.5 \times 10^{-6}} = 637 \Omega.$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{470^2 + 873^2} = 991 \Omega$

:.
$$I = \frac{V}{Z} = \frac{40}{991} = 0.040 \text{ A}$$

(a)
$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{2.4 \times 2.5 \times 10^{-6}}} = 408 \,\mathrm{s}^{-1}.$$
 $\therefore f = \frac{\omega}{2\pi} = 65.0 \,\mathrm{Hz}$

(b) The reactances of the inductor and capacitor are equal and opposite, so Z = R.

:.
$$I = \frac{V}{R} = \frac{50}{470} = 0.106 \text{ A}.$$

(c) $V_{\rm R} = 50 \text{ V}; V_{\rm L} = I\omega L = 0.106 \times 408 \times 2.4 = 104 \text{ V};$ $V_{\rm C} = V_{\rm L} = 104 \text{ V}$

[Alternatively calculate $V_{\rm c}$ using $V_{\rm c} = \frac{I}{\omega C}$]

(d) Only the resistor dissipates power, so $\langle P \rangle = I_{\rm rms}^2 R = 0.106^2 \times 470 = 5.3 \text{ W}$

Test Yourself 9.1

- **1** $E = 3 \text{ kV m}^{-1} \text{ downwards [or 3 kN C}^{-1}]$
- **2** $E = 980 V m^{-1}$ upwards
- 9.0 × 10²⁴ kg
- 40 000 km from the Moon on the line joining the centres of the Earth and Moon.
- **5** $V_{\rm G} = -1.13 \times 10^6 \, \rm J \, kg^{-1}$
- Acceleration due to Sun = 2.4 × acceleration due to Earth [NB This means that the Moon's path is always concave to the Sun]
- **1.0** × 10^6 m s⁻¹ at 10.0° to original direction [0.174 rad]
- 8 4.5 MV m⁻¹
- 9 450 kV
- 1 22 pF

1 If the sphere carries a charge, *Q*, the potential, $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{a}$. $\therefore \frac{Q}{V} = C = 4\pi e_0 a$

Pield is radial, so at right angles to the curved surface of an imaginary concentric cylinder.

$$\therefore \text{ Flux emerging from cylinder} = E2\pi rl = \frac{Q}{\varepsilon_0}$$
$$Q = 3 \times 10^{-6} l. \therefore E2\pi \times 0.1l = \frac{3 \times 10^{-6} l}{8.854 \times 10^{-12}},$$
leading to $E = 540 \text{ kV m}^{-1}.$

B 2.4 μC m⁻²

() Method: Use vector equilibrium to find the horizontal force
on each sphere [0.253 mN]
Then use
$$F = \frac{1}{4\pi\epsilon_0} \frac{QQ}{r^2} \rightarrow Q = 16.8 \text{ nC}$$

(a) *E* due to each = 60 500 V m⁻¹ in opposite directions.
(b) Resultant field = 0
(c) $V = 3024 + 3024 = 6050 V$
(c) $W = \frac{1}{4\pi\epsilon_0} \frac{Q_1Q_2}{d^2} = 9 \times 10^9 \times \frac{(16.8 \times 10^{-9})^2}{0.1}$
 $= 2.54 \times 10^{-5}] \sim 25 \mu J$
(c) Electrical potential energy 10 cm apart = $2.54 \times 10^{-5} J$
 \therefore Electrical PE 5 cm apart = $5.08 \times 10^{-5} J$
 \therefore Loss in electrical PE = $2.54 \times 10^{-5} J$
Gain in height between the two positions = 0.48 cm [needs calculating]
 \therefore Gain in gravitational potential energy = $mg\Delta h = 9.4 \times 10^{-6} J$
 \therefore Loss in PE = $2.54 \times 10^{-5} - 9.4 \times 10^{-6} J = 1.60 \times 10^{-5} J$
Using KE = $\frac{1}{2}mv^2$ we get $v = 0.4 \text{ m s}^{-1}$.
(c) (a) 121 000 V m⁻¹ (b) 0
(c) (a) 5.95 \times 10^{24} kg (b) 9.78 N kg⁻¹ [Both correct to 2 s.f.]
(c) Total mass within outer core boundary = $1.98 \times 10^{24} \text{ kg}$
This gives $g = 10.8 \text{ N kg}^{-1}$
The uniform density value would be $\frac{3500}{6370} \times 9.8 = 5.4 \text{ N kg}^{-1}$, i.e. true value $\sim 2 \times$ uniform density value.
(c) 14 MHz
(c) 14 MHz
(d) acceleration = $8.8 \times 10^{12} \text{ m s}^{-2}$
(b) radius of circle = 1.14 mm
(c) 14 MHz
(e) The force due to the magnetic field provides the centripetal force.
 $\therefore \frac{mv^2}{r} = Bqv. \therefore \omega = \frac{v}{r} = \frac{Bq}{v}$.
 $\therefore f = \frac{Bq}{2\pi m}$, which is independent of the speed.
For a proton with $m = 1.67 \times 10^{-27} \text{ kg}, f = 460 \text{ Hz}$.
(e) Peak current $= I_0 \times \sqrt{2} = 28.3 \text{ A}$
 $F_{mw} = Bl\ell \cos \theta = 5 \times 10^{-5} \times 28.3 \cos 60^\circ = 0.7 \text{ mN}; f = 50 \text{ Hz}$

Numerically in Example G, both powers are 0.05 W.

The electrical power $P = I^2 R = \left(\frac{B\ell v}{R}\right)^2 R = \frac{B^2 \ell^2 v^2}{R}$, which is the

 $\therefore \omega = 100\pi$

same.

25

 \therefore F / mN = 0.7 cos (100 $\pi t + \varepsilon$)

Algebraically, induced emf $\mathcal{E}_{in} = \frac{\Delta(N\Phi)}{t} = B\ell v$

 $\therefore I = \frac{B\ell v}{R}$. So the motor force, $BI\ell = \frac{B^2\ell^2 v}{R}$.

:. The work done per second, $P = \frac{B^2 \ell^2 v^2}{R}$

Data Exercise 10.1

 $x_1 = 2.0; y_1 = 14.0$

<i>X</i> ₂	<i>Y</i> ₂	Δx	Δy	$\frac{\Delta y}{\Delta x}$
3.0	29.00	1.0	15	15
2.5	20.75	0.5	6.75	13.5
2.1	15.23	0.1	1.23	12.3
2.05	14.6075	0.05	0.6075	12.15
2.01	14.1203	0.01	0.1203	12.03
2.005	14.06008	0.005	0.060075	12.015
2.001	14.012	0.001	0.012003	12.003

As $\Delta x \rightarrow 0$, $\frac{\Delta y}{\Delta x}$ appears to tend to 12. This is confirmed by the fact that if $\Delta x = -0.001$, $\frac{\Delta y}{\Delta x} = 11.997$.

Data Exercise 10.3

No. of	Lower	Upper	
strips	area (A _L)	area (A _u)	
10	6.84	9.24	
20	7.41	8.61	
100	7.88	8.12	
200	7.94	8.06	
1000	7.988	8.012	

Test Yourself 10.1

0	$\frac{\mathrm{d}y}{\mathrm{d}x} = 75x^2 = 168.75$	2	$\frac{\mathrm{d}x}{\mathrm{d}t} = 15\cos t = -15$	
8	$\frac{\mathrm{d}N}{\mathrm{d}t} = 600e^t = 989$	4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6.0}{t} = 1.0$	
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8 + 6t = 23$	6	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\sin t + 8\cos t = -3\sin t + 8\sin t = -3\sin t$	-3.00
0	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 3e^x = 26.9$	8	$\frac{dx}{dt} = \frac{10}{t} - \frac{1.5}{\sqrt{t}} = 1.75$	
9	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x^2(x^2 - 3)$	0	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 6x - 5$	
0	$\frac{\mathrm{d}y}{\mathrm{d}x} = x(2+x)e^x$	12	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6t\sin t + 3t^2\cos t$	
ß	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{(x-1)^2}$	1	$\frac{dy}{dx} = \frac{x^2 - 4x - 7}{(x - 2)^2}$	
6	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2t^3(4\cos t + t\sin t)}{\cos^2 t}$	16	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - 2\ln x}{x^3}$	
0	(b) $\frac{\mathrm{d}f}{\mathrm{d}g} = 3g^2 = 3(x^2 + 2)^2$	$\frac{\mathrm{d}g}{\mathrm{d}x}$	= 2x	
	(c) $\frac{\mathrm{d}y}{\mathrm{d}x} = 3(x^2 + 2)^2 2x = 6$	x ⁵ + 2	$24x^3 + 24x$	
	Check: $f = (x^2 + 2)^3 = x^6 + x^6$	6 <i>x</i> ⁴ +	$12x^2 + 8$	
	$\therefore \frac{\mathrm{d}f}{\mathrm{d}x} = 6x^5 + 24x^3 + 24x$	QED		11

Updated Edition

9
$$i = 75 \cos 3i$$

9 $\frac{1}{4t} = -1.0 \times 10^{10} e^{4t1}$
9 $\frac{1}{4t} = \frac{1}{2} e^{-y/3}$
9 $\left[-25e^{-3} \right]_{10}^{10} = = 1.58$
9 $\left[10 \ln 3 \right]_{1}^{1} = 16.1$
9 $\left[\frac{1}{4t} = \frac{1}{7} e^{-y/3} \right]$
9 $\left[-25e^{-3} \right]_{10}^{10} = = 1.58$
9 $\left[10 \ln 3 \right]_{1}^{1} = 16.1$
9 $\left[\frac{1}{4t} = \frac{1}{7} e^{-y/3} \right]$
9 $\left[\frac{1}{2} \frac{2}{8} e^{-y/3} \right]$
9 $\left[\frac{1}{8} e^{-y/3} e^{-y/3} e^{-y/3} \right]$
9 $\left[\frac{1}{8} e^{-y/3} e^{-y/3} e^{-y/3} \right]$
9 $\left[\frac{1}{8} e^{-y/3} e^{-y/3} e^{-y/3} e^{-y/3} \right]$
9 $\left[\frac{1}{8} e^{-y/3} e^{-y$

2 Dividing by the $\frac{1}{2}\omega^2$ term from the start: $I = \int_{-1}^{1/2} \frac{M}{L} x^2 dx = \frac{1}{12} M l^2$

(a) Area of ring = $2\pi r \Delta r$.

$$\therefore \text{ Mass of ring, } \Delta M = \frac{2\pi r \Delta r}{\pi a^2} M = \frac{2r \Delta r}{a^2} M$$
(b) $\Delta E_k = \frac{Mr^3 \omega^2 \Delta r}{a^2}$, so $E_k = \frac{M\omega^2}{a^2} \int_0^a r^3 dr = \frac{1}{4} M a^2 \omega^2$
(c) $I = \frac{1}{2} M a^2$

Test Yourself 11.1

 $v = 10e^{-5t}$ 2 $N = 1 \times 10^6 e^{-0.001t}$ $I / \mu A = 6e^{-0.2t}$ $4 \quad x = 5\sin 8t$ 6 $h = 50e^{-0.02t}$ $x = 0.1 \cos 5t$ $V = 9e^{-0.097t}$ $y = 0.224 \cos(10t - 1.11)$ or $y = 0.224 \sin(10t + 0.46)$ $Q / \mu C = 0.2 \sin 500t$ $0 \quad Q / mC = 47 \cos 100t$ T = 0.0628 s $v = 50 - 30e^{-0.1t}$ 0 $N = \frac{R}{2} \left(1 - e^{-\lambda t}\right)$ $V = 16e^{-0.3t} + 24$ 1 $I = 0.5 \sin 13t + 1.2 \sin 12t$ ß $x = 0.2(1 - \cos 10t)$ **(6)** $v = 12.5(1 - e^{-0.4t}) + 5t$ **1** $v = 0.206e^{-12t} + 0.443 \sin(2\pi t - 0.482)$ **(B)** $N = 2 \times 10^7 (e^{-0.2t} - e^{-0.1t})$ (9) $N_{\text{R}} = 1 \times 10^{15} (e^{-0.05t} - e^{-0.125t})$ with *t* in days. $\therefore N_{\rm R}$ (20 days) = 2.9 × 10¹⁴ 20 $x / m = 0.1 \cos 2.5t$ 2) $x = 2.0e^{-2t}\cos 9.80t$ 2 (a) $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 9x = 0$ (b) $x = -0.15e^{-2t}\cos\sqrt{5}t$ (a) $k = 0.1; p = \pi$, i.e. 3.1420; $\omega = 3.1420$ 23 $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 0.1\frac{\mathrm{d}x}{\mathrm{d}t} + 9.872x = 0$ (b) $x = 0.615e^{-0.05t} \sin \pi t$ (c) 0.00026 s [without damping the period would be 1.99974 s] (a) $L\frac{dI}{dt} + IR = V_0 \cos \omega t \text{ or } \frac{dI}{dt} + I\frac{R}{I} = \frac{V_0}{I} \cos \omega t$ (b) Phase difference, $\varepsilon = \tan^{-1} \left(\frac{\omega L}{R} \right)$ (c) $V_0 = I_0 \sqrt{\omega^2 L^2 + R^2}$ (a) If $L \frac{dI}{dt} + IR + \frac{Q}{C} = V_0 \cos \psi t$,

differentiating $\rightarrow L \frac{d^2 I}{dt^2} + R \frac{dI}{dt} + \frac{I}{C} = -V_0 \psi \sin \psi t$ Look for a CF of the form $I = I_0 \cos(\psi t + \varepsilon)$ Substituting into the differential equation gives: $-V_0\psi\sin\psi t = -I_0L\psi^2\cos(\psi t + \varepsilon) - I_0R\psi\sin(\psi t + \varepsilon)$ $+\frac{I_0}{C}\cos(\psi t+\varepsilon)$ $\therefore -V_0 \sin \psi t = I_0 \left[\frac{1}{\psi C} - \psi L \right] \cos(\psi t + \varepsilon) - I_0 R \sin(\psi t + \varepsilon)$ To find the values of I_0 and ε , consider substitute the following values of *t*: t = 0: $0 = \left[\frac{1}{wc} - \psi L\right] \cos \varepsilon - R \sin \varepsilon$ [dividing by I_0] $\therefore \tan \varepsilon = \frac{\frac{1}{\psi C} - \psi L}{\frac{D}{2}}$ $\therefore \sin \varepsilon = \frac{\frac{1}{\psi C} - \psi L}{\sqrt{R^2 + \left(\frac{1}{\omega C} - \psi L\right)^2}} \text{ and } \cos \varepsilon = \frac{R}{\sqrt{R^2 + \left(\frac{1}{\omega C} - \psi L\right)^2}}$ $\psi t = \frac{\pi}{2}$ $-V_0 = -I_0 \left[\frac{1}{\mu C} - \psi L \right] \sin \varepsilon - I_0 R \cos \varepsilon$ $\frac{\therefore V_0 = I_0 \left[\frac{1}{\psi C} - \psi \right]}{\sqrt{R^2 + \left(\frac{1}{\psi C} - \psi \right)^2}} \left\{ \frac{\frac{1}{\psi C} - \psi L}{\sqrt{R^2 + \left(\frac{1}{\psi C} - \psi L\right)^2}} + R \right\}$ $\therefore = I_0 \left\{ \frac{R^2 + \left(\frac{1}{\psi C} - \psi L\right)^2}{\sqrt{R^2 + \left(\frac{1}{\psi C} - \psi L\right)^2}} \right\} = I_0 \sqrt{R^2 + \left(\frac{1}{\psi C} - \psi L\right)^2}$ (b) $V_0 = I_0 \sqrt{R^2 + \left(\psi L - \frac{1}{\psi C}\right)^2}.$ $\therefore I_0$ is maximum when $\psi L - \frac{1}{\psi C} = 0$ $\therefore \psi^2 = \frac{1}{LC} \qquad \therefore \psi = \frac{1}{\sqrt{LC}} \qquad \therefore f_{\rm R} = \frac{1}{2\pi\sqrt{LC}}$ Test Yourself 12.1 (a) 3i; -3i (b) -4 + 5i(c) (i) 1 (ii) i (iii) -1 (iv) -i (d) (i) 1 (ii) -1 (iii) -i (iv) i (e) (i) 0 (ii) 1 (iii) -1 (a) Re $(z^*) = 4$ (b) $\text{Im}(z^*) = 3$ (c) Re(iz) = -3(d) Im(iz) = 4**3** (a) x = 3 + 2i and 3 - 2i(b) -3 + 2i and -3 - 2i respectively

(c)
$$x^2 + 6x + 13 = 0$$

Mathematics for Physics

Updated Edition

8

4

Answers

Test Yourself 12.2

(a)
$$z_1 = Ae^{i\left(\omega t + \frac{\pi}{2}\right)} = Ae^{i\omega t}e^{i\frac{\pi}{2}} = Aie^{i\omega t};$$

 $z_2 = 3Ae^{i\left(\omega t + \pi\right)} = 3Ae^{i\omega t}e^{i\pi} = -3Ae^{i\omega t}$
(b) $(z_1 + z_2) = Ae^{i\omega t}(-3 + i) = Ae^{i\omega t}\sqrt{10}e^{i\phi}$

- where $\phi = \cos^{-1}\left(-\frac{3}{\sqrt{10}}\right) = 0.898\pi$ [= 2.820 rad] (c) $(x_1 + x_2) = \sqrt{10}A \cos{\{\omega t + 0.898\pi\}}$
- 2 (a) Using Newton's 2nd law in basic SI units the differential equation is:

$$1.50 \frac{d^2 x}{dt^2} = -3.6 \frac{dx}{dt} - 96x$$

which reduces to $\frac{d^2 x}{dt^2} + k \frac{dx}{dt} + \omega_0^2 = 0$,
where $\omega_0 = \sqrt{\frac{96}{1.5}} = \sqrt{64} = 8.0 \text{ s}^{-1}$ and $k = \frac{3.6}{1.5} = 2.4 \text{ s}^{-1}$

(b) $\lambda^2 + 2.4\lambda + 64 = 0$

:.
$$\lambda = \frac{-2.4 \pm \sqrt{2.4^2 - 4 \times 64}}{2} = -1.2 \pm 7.91i$$

:. Re (λ) = -1.2; Im (λ) = \pm 7.91

(c)
$$\omega_1 = 7.91$$
, $\therefore T = \frac{2\pi}{\omega_1} = 0.79 \text{ s} (2 \text{ s.f.})$

(d) If
$$e^{-1.2t} = 0.05$$
; $t = \frac{\ln 0.05}{-1.2} = 2.5 \text{ s} (2 \text{ s.f.}) = 3.1T$.

So 3 complete cycles.

(a) (i)
$$Z_{s} = R - iX_{c} = R - \frac{1}{\omega C}$$

(ii) $Z_{p} = \frac{R(iX_{c})}{R - iX_{c}} = \frac{R}{1 + (\omega CR)^{2}} [1 - i\omega CR]$
(b) (i) $Z_{s} = R - iR = R\sqrt{2}e^{-i\frac{\pi}{4}}$
(ii) $Z_{p} = \frac{R}{2} [1 - i] = \frac{R}{\sqrt{2}}e^{-i\frac{\pi}{4}}$
(c) $\frac{I_{s}}{I_{p}} = \frac{Z_{p}}{Z_{s}} = \frac{1}{2}$; Phases the same [leading the pd by $\frac{\pi}{4}$]
(a) (i) $Z = R + i\left(\omega L - \frac{1}{\omega C}\right)^{2}$
(b) The minimum value of Z is when $\left(\omega L - \frac{1}{\omega C}\right) = 0$,
 $\therefore \omega_{0}L = \frac{1}{\omega_{0}C}, \quad \therefore \omega_{0} = \frac{1}{\sqrt{LC}}$
At this frequency $Z = \sqrt{R^{2} + 0} = \sqrt{R^{2}} = R$
(c) $\frac{\text{peak pd across } L}{\text{peak pd across } R} = \frac{I\omega_{0}L}{IR} = \frac{\omega_{0}L}{R}$
(d) If $\sqrt{2}R = \sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}$, then $2R^{2} = R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}$
 $\therefore \left(\omega L - \frac{1}{\omega C}\right)^{2} = R^{2}$, so $\omega L - \frac{1}{\omega C} = \pm R$ QED
(e) $\omega_{1}L - \frac{1}{\omega_{1}C} = -R$ and $\omega_{2}L - \frac{1}{\omega_{2}C} = R$
(i) \therefore adding: $(\omega_{1} + \omega_{2})L - \frac{\omega_{1} + \omega_{2}}{\omega_{1}\omega_{2}C} = 0$,
i.e. $(\omega_{1} + \omega_{2})\left[L - \frac{1}{\omega_{1}\omega_{2}C}\right] = 0$
 $\therefore L - \frac{1}{\omega_{1}\omega_{2}C} = 0$ leading to $\omega_{1}\omega_{2} = \frac{1}{LC} = \omega_{0}^{2}$
(ii) and subtracting $(\omega_{2} - \omega_{1})L + \frac{\omega_{2} - \omega_{1}}{\omega_{1}\omega_{2}C} = 2R$.
but $\omega_{1}\omega_{2} = \frac{1}{LC}$ so $2L(\omega_{2} - \omega_{1}) = 2R$
So $\frac{\omega_{2} - \omega_{1}}{\omega_{0}} = \frac{R}{\omega_{0}L} = \frac{1}{Q}$
(f) From (e)(ii) Q is inversely proportional to the fractional difference of the half power points related to the resonant frequency. So the sharper the resonance

peak, the greater the value of *Q*.

;