
Maths for Physics Updated Edition Answers

Test Yourself 1.1

➊ V = kg m2 s−3 A−1

➋ [G] = kg−1 m3 s−2

➌ (a) ε0 = 
1

4π
 
Q1Q2

Fr2 , so [ε0] = 
[Q1][Q2]
[F][r2]

 = 
C × C

N × m2 = C2 N−1 m−2

(b) Using C = A s and N = kg m s−2, [ε0] = kg−1 m−3 s4 A2

➍ (a) [h] = J s

(b) [h] = kg m2 s−1

➎ [μ0] = H m−1 = kg m s−2 A−2, so H = kg m2 s−2 A−2

➏ F = [C] = kg−1 m−2 s4 A2

➐ 2.5 MΩ [= 2.5 × 106 Ω]

➑   [ 1
ε0 μ0

] = 
1

kg−1 m−3 s4 A2 × kg m s−2 A2 = m2 s−2 = [c2] QED

➒ (a) [σ] = W m−2 K−4

(b) [σ] = M T−3 Θ−4 

Note: L cancels out so [σ] does not depend on L

➓  [W] = L Θ

⓫  Ω = [R] = kg m2 s−3 A−2

⓬  (a) [c] = J kg−1 K−1

 (b) [c] = m2 s−2 K−1

⓭  N s = (kg m s−2) × s = kg m s−1

⓮  Starting from the rhs and working in dimensions:

 [pΔV] = [F
A] × [ΔV] = 

M L T−2

L2  × L3 = M L2 T−2 = [W] QED

⓯  Working in units

 [p2c2] = N2 s2 × m2 s−2 = N2 m2 

 [m2c4] = kg2 m4 s−4 = (kg m s−2)2 m2 = N2 m2

 ∴ The right-hand side is homogeneous.

 [E2] = J2 = (N m)2 = N2 m2

 So the two sides have the same units, i.e the equation is 
homogeneous.

⓰  Working in dimensions:

 Dimensions of the right side = [nAve] = L−3 L2 (L T−1) (I T) = I 
= dimensions of the left side QED

⓱  6.4 μm s−1

⓲  If Ek max is expressed in J then the units of both terms on the 
right must be J, i.e. [φ] = J.

 If Ek max is expressed in eV then [φ] = eV.

⓳  Working in dimensions: [p] = [F
A] = M L T−2 L−2 = M L−1 T−2

 [1
3 ρc2] = M L−3(L T−1)2 = M L−1 T−2. The two sides have the 

same dimensions, hence the equation is homogeneous.

⓴  Working in units: [h
λ] = 

J s
m

 = 
N m s

m
 = N s = [p], so the 

equation is homogeneous.

21 Working in dimensions: [p] = M L−1 T−2; [ρ] = M L−3; 

 ∴ [√γp
ρ

 ] = √L2 T−2 = L T−1

 [c] = L T−1, so the two sides have the same dimensions, i.e, 
the equation is homogeneous.

22 Working in units: From Q2, [G] = kg−1 m3 s−2.

 ∴ [− 
GM1M2

R ] = 
kg−1 m3 s−2 kg kg 

m
 = kg m2 s−2 = [E]

 The two sides have the same dimensions, i.e. the equation is 
homogeneous.

23 a = 12 ; b = − 12 , i.e. v = c √K
ρ

 . Compare this with Q21.

24 a = b = − 12 ; c = 32 , i.e. T = k √ r3

GM
 . Compare this with Kepler’s 

3rd law.

25 x = z = 12 ; y = − 12 , i.e. c = k √Tl
m

 . In fact it is usually written 

c = √T
μ

 , where μ is the mass per unit length of the wire. The 

dimensionless constant k = 1.

Test Yourself 2.1

➊ 23 ➋ −11 ➌ 16 ➍ 52 ➎ 306

➏ 21 000 ➐ 600 ➑ 42 ➒ 520 ➓  264

⓫  75 ⓬  40 ⓭  −3 ⓮  5 ⓯  3.33

⓰  6 ⓱  0.20 ⓲  −0.5 ⓳  ±12 ⓴  ±6

21 2 22 −2.1726 23 ±44.3 24 1.25 25 8

Test Yourself 2.2

➊ m = 
E
c2 ➋ R = 

V2

P

➌ ρ = 
RA

l
 ➍ f = 

c
λ

➎ r = √ I
4πσT4 or 

1
T 2 √ I

4πσ
 etc. ➏ c = √3p

ρ

➐ t = 
v − u

a
 ➑ u = √v2 − 2as

➒ t = 
2s

u + v
 ➓  v = 

I
nAe

⓫  x = √2E
k

 ⓬  g = 
4π2l
T2 

⓭  v = √2gh ⓮  m = 
Ft

v − u

⓯  v = 
s − 12at2

t  or 
s
t
 − 

1
2

 at  ⓰  h = 
Ek max + φ

f

⓱  M2 = 
Fr2

GM1
 ⓲  M = 

4π2a3

GT2

1



⓳  X = √Z2 − R2 ⓴  β = √1 − 
m0

2

m2

21 C = 
C1C2

C1 + C2
 or 

1
1
C1

 + 
1
C2

 22 r = 
ER
V

 − R or R(E
V

 − 1)
23 M1 = 

M2d
r1

 − M2 or M2(d
r1

 − 1) 24 M2 = 
M1

( d
r1

 − 1)
 or 

r1M1

d − r1

25 M1 = 
4π2d3

T2G
 − M2 

Test Yourself 2.3

➊ 3x + 6 ➋ 20x + 24 ➌ a − 3

➍ 20 + 10a + 15b ➎ xy − 2x + 3y − 6 ➏ x2 −4y2

➐ x2 + 10x + 25 ➑ 4 − 4y + y2 ➒ 2p2 + pq − 3q2

➓  25a2 − 60ab + 36b2  ⓫  −9 + 6x − x2

⓬  ax − ab ⓭  x2 − a2 ⓮  x2 − 4ax + 4a2

⓯  z2 + b2 ⓰  z2 + b2 ⓱  4zb

⓲  t4 + 2t2 +1 ⓳  t4 − 1 ⓴  t3 − 2t2 + t − 2

21 a3 + a2b − ab2 − b3 22 a − b 23 a + b

24 1 25 x − c

Test Yourself 2.4

➊ 5.4 ➋ 12.5 ➌ 960

➍ 4.44 ➎ 10 ➏ 26.7

➐ 3.33 ➑ 6.66 ➒ 30

➓  487 ⓫  12 ⓬  5.97 × 1024

⓭  1.77 × 10−3 ⓮  1.96 × 10−5 ⓯  2.19

⓰  1245 ⓱  314 ⓲  1.89 × 10−7

⓳  9.95 × 1026 ⓴  25.9 21 2.5

22 1.05 23 20 24 −24

25 1.98 × 108

Test Yourself 3.1

➊ x = ±4

➋ x = ±0.2

➌ t = 0 or 7

➍ t = 0 or 30

➎ t = 0 or 10.2

➏ v = ±77.5

➐ v = ±3460

➑ x = ±7

➒ l − 0.24 = ±5.57, ∴l = −5.13 or 5.61

➓  v + 50 = ±70.7, ∴ v = −120.7 or 20.7

⓫  v − 5 = ±25.2, ∴ v = −20.2 or 30.2

⓬  x = 1 or −2

⓭  x = −2.55 or −0.79

⓮  t = 0.76 or 13.24

⓯  t = 0.43 or 11.8

⓰  t = 6.95 or 18.05

⓱  x = ±2 m. NB. units!

⓲  v = ±1000 m s−1

⓳  t = 2.04 s. NB. The 0 solution is incorrect as the question 
asked for the time at which the stone returned to the 
ground.

⓴  57 km s−1.

21 t = 1.36 s [ignore the negative root].

22 3500 m, ignoring the 0 root.

23 Total distance from centre = 11 530 km; h = 5150 km.

24 20 m s−1.

25 2.70 s.

Test Yourself 3.2

➊ a = 3.5; u = 10

➋ r = 0.5; E = 2.0

➌ a = 1.5; u = 4.0

➍ r = 3.0; E = 2.25

➎ a = 4; v = 24

➏ v = 15; m = 10

➐ k = 25; l0 = 0.2

➑ u = ±6; a = 2

➒ a = 0.75 m s−2; u = 2.5 m s−1. [NB. units]

➓  a = 0.45 m s−2; u = ±6.78 m s−1.

⓫  r = 1.5 Ω; E = 6.0 V

⓬  u = 8 m s−1; a = 3 m s−2.

⓭  (a) I1 = 0.0978 A; I2 = 0.0434 A

(b) V2V = 1.90 V; V1.5V = 1.41 V

(c) V10 Ω = 1.41 V = the pd across the 1.5 V cell as expected.

⓮  E = 12 V; r = 12 Ω.

⓯  Solution 1: v1 = 5 m s−1; v2 = 8 m s−1. Solution 2: v1 = 7 m s−1; 
v2 = 4 m s−1

⓰  v1 = − 43 m s−1; v2 = 83 m s−1. The other solution with v1 = 4 m s−1 
and v2 = 0 represents a near miss!

⓱  R = 6.85 Ω; ε = −0.023 V

⓲  R = 4.80 Ω; ε = 0.013 A

⓳  μ = 0.053 kg; k = 25.2 N m−1

⓴  h = 2.531 m; g = 9.82 m s−2.

21 u = 10 m s−1; a = 2.0 m s−2.

22 Solution 1: u = 15 m s−1; a = 5 m s−2 (constant acceleration).
Solution 2: u = 25 m s−1; a = 0 (constant velocity). 
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23 The valid solution is r = 2.0 Ω, E = 24 V. The invalid solution 
has r = −14 Ω!

24 (a) T1
2 = 4π2 

M1

k
. With the additional mass, T2

2 = 4π2 
M1 + M2

k

 Subtracting gives T2
2 − T1

2 = 4π2 
M2

k
 as required.

(b) k = 18.0 N m−1; M1 = 0.200 kg.

25 As in Q24, T2
2 − T1

2 = 4π2 
Δl
g

 , where Δl is the change in 
length = −0.500 m.

 g = 8.657 m s−2; original length = 2.500 m

Test Yourself 3.3

➊ √(1 + x)3 = 1 + 32 x + 
3
2 × 12
2 × 1

 x2 + 
3
2 × 12 × (− 12)

3 × 2 × 1
 x3 + 

3
2 × 12 × (− 12) × (− 32)

4 × 3 × 2 × 1
 x4 + …

 = 1 + 32 x + 38 x2 − 1
16 x3 + 3

128 x4 + …

➋ 1.837117

➌ 1; 0.75; 0.09375; −0.0078125; 0.0014648

➍ 1; 1.75; 1.84375; 1.83594; 1.83740 (a) 4.7%, (b) −0.4%

➎ Calculator value = 1.15369

 Terms: 1; 0.15; 0.00375; −0.0000625; 0.000000234

 Totals: 1; 1.15; 1.15375; 1.15369; 1.15369

 (a) 0.3%, (b) 4 × 10−3 %

➏ 1.03

➐ 1.03

➑ 0.94

➒ 1.15

➓  1.1

⓫  √4.5 = √4 × (1 + 0.125) = 2 × (1 + 0.125)0.5

 ∴ √4.5 = 2 × (1 + 0.5 × 0.125 + 
0.5 × (−0.5) 

2 × 1
 × 0.1252 + …)

 1st order approximation = 2.125

 2nd order approximation = 2.121…

⓬  
3√1100 = 10 × 3√1 + 0.1 = 10 × (1 + 0.033…) = 10.33… to 1st 
order.

⓭  
1

√1 + x
 = (1 + x)−0.5

  = 1 – 0.5x + 
–(0.5) × (−1.5)

2 × 1
 x2 + 

–(0.5) × (−1.5) × (−2.5)
3 × 2 × 1

 x3 + 

   + 
–(0.5) × (−1.5) × (−2.5) × (−3.5)

4 × 3 × 2 × 1
 x4 + …

 = 1 – 0.5x + 0.375x2 – 0.3125x3 + 0.27344x4 + …

⓮  Terms to 4th order: 1; 0.1; 0.015; 0.0025; 0.00044

 Partial sums: 1; 1.1; 1.115; 1.1175; 1.11795

 Calculator value = 1.11803

⓯  To 1st order: (1 + x)n − (1 − x)n = (1 + nx…) − (1 − nx) 

  = 1 + nx − 1 + nx = 2nx

⓰  To 1st order: √1 + x − √1 − x = 1 + 12 x − (1 − 12 x) = x.

⓱  To 1st order: (1 + x)n − 
1

(1 + x)n = (1 + nx) − (1 − nx) = 2nx

⓲  To 1st order: (x + a)n = xn(1 + 
a
x)n

 = xn(1 + 
na
x ) = xn + naxn − 1

 This will be a good approximation if na << 1

⓳  To 1st order: (x + a)n − xn = naxn − 1

⓴  (a) AC = √1.0002 + 0.0202 = (1 + 0.00042) 

  = 1 + 12 × 0.0004 − 1.0002 to 1st order.

 (b) AC = 1.00019998

21 (a) S1P = √12 + 0.002252 = (1 + 5.0625 × 10−6)0.5 

  = 1 + 2.53 × 10−6 m

  S2P = √12 + 0.001752 = (1 + 3.0625 × 10−6)0.5 

  = 1 + 1.53 × 10−6 m

  ∴ S1P − S2P = 1.00 × 10−6 m.

 (b) 1.00 × 10−6 m

22 S1P = √D2 + (x + 
d
2)2

 = D(1 + 
(x + d2)2

D2 )1
2
 = D(1 + 

(x + d2)2

2D2 )
  to 1st order.

 S2P = √D2 + (x − 
d
2)2

 = D(1 + 
(x − d2)2

D2 )1
2
 = D(1 + 

(x − d2)2

2D2 )
  to 1st order.

 ∴S1P − S2P = 
(x + d2)2

2D
 − 

(x − d2)2

2D
 = 

x2 + xd + d
2

4  − (x2 − xd + d
2

4 )
2D

 = 
xd
D

 This leads on to the Young Fringes formula.

23 To 2nd order:

 √1 + x + 
1

√1 + x
 = (1 + 12 x + 

1
2(− 12)
2 × 1

 x2) + (1 − 12 x + 
(− 12)(− 32)

2 × 1
 x2)

  = 1 + 12 x − 18 x2 + 1 − 12 x + 38 x2

  = 2 + 14 x2

24 To 2nd order:

 (1 + x)n + (1 + x)−n = 1 + nx + 
n(n − 1)

2
 x2 + (1 − nx + 

n(n − 1)
2

 x2)
  = 2 + n2x2

 With n = 4 and x = 0.1 this gives 2.16. The calculator value is 
2.15

25 sin θ = 
opposite

hypotenuse
 = 

x
√1 + x2

 = x(1 − 12 x2) x to 3rd order.

 cos θ = 
adjacent

hypotenuse
 = 

1
√1 + x2

 = 1 − 12 x2 to 3rd order.

 tan θ = 
opposite
adjacent

 = x exactly!

Test Yourself 4.1

➊ (a) 5 (b) 25 (c) 0.2 or 15
 (d) 0.04 or 1

25 (e) 625

➋ (a) 4 (b) 0.25/1
4 (c) 8

 (d) 128 (e) 0.125/1
8
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➌ (a) a
1
4/a0.25 (b) a−

1
4/a−0.25  (c) a

2
3/a0.667

 (d) a
2
5/a0.4 (e) a−

3
2/a−1.5 

➍ (a) 15 (b) 15 (c) 0.16 (d) 2.5

➎ p = −2

➏ p = 32
➐ p = 32 , k = 

1
6√π

➑ R = 
16ρV
π2d4  , i.e. k = 

16ρV
π2  and n = −4

➒ (a) 2000 × L  = 8 × 1029 W

 (b) 0.0081 × L  = 3 × 1024 W

➓  R = 5I−
2
3, i.e. c = 5 and n = − 23

⓫  (a) 0.6020 (b) −1.3980 (c) 0.9030

 (d) 2.3010 (e) 0.3980

 [Part (e) log 2.5 = log 
10
4

 = log 10 − log 4 = 1.0000 − 0.6020]

⓬  (a) 3.170 (b) −1.585 (c) 2.585

 (d) 0.585 (e) 1.262

 [Part (e) log3 4 = 2 log3 2 = 
2

log2 3
 ]

⓭  (a) 2.0 (b) −1.0 (c) 0.5 / 12
 (d) 1.5 /  32 (e) −1.25 / − 54
⓮  (a) 0.5 / 12 (b) 2.5 / 52 (c) −3

 (d) 0.25 / 14 (e) 2.16

 [Part (e) log4 20 = log4 2 + log4 10 = 0.5 + 
1

log10 4
 = 0.5 + 

1
2 log 2]

⓯  (a) 5 log 2 (b) −log 2 (c) 0 (d) −log 2

⓰  (a) 2 ln 2 + 1 (b) 3 ln 2 + 1 (c) 5 ln 2 − 1

 (d) 4 ln 2 − 1 (e) 1
2 ln 2 − 2

⓱  (a) x = 0.90 (b) x = −0.90 (c) x = 4.61

 (d) x = 7.97 (e) x = 403

⓲  (a) Remember that eln b = b

 x ln a = ln ax ∴ ex ln a = eln ax = ax QED

(b) 2π = eπ ln 2 = e3.142 × 0.6931 = 8.82

⓳  (a) x = 16 (b) x = ±8 (c) x = 6.87 × 1010

 (d) x = ± 12 (e) x = 36

⓴  (a) L1 = 10 log 
1

10−12 = 10 log 1012 = 10 × 12 = 120 dB SIL

(b) L1 = 10 log (1012I) (1)

 Consider an increase of 3 dB; let the sound intensity be kI

 Then L1 + 3 = 10 log (1012kI)

 ∴ L1 + 3 = 10 log k + 10 log (1012I)

 Subtract equation (1). ∴ 3 = 10 log k. 

 ∴ log k = 0.3, ∴k = 2.00 [3 s.f.]

21 (a) 1.980 × 106 s (b) 96 Bq (c) 11.7 × 106 s.

22 (a) f35 = 1.55 Hz; f45 = 1.06 Hz

(b) Substituting the values of l and f into f = kln: 
1.55 = k × 0.35n (1) and 1.06 = k × 0.45n (2)

 Dividing equation (1) by equation (2) → 1.462 = 0.778n

 Taking natural logs: → ln 1.462 = n ln 0.778 
→ n = −1.51 [log10 can be used here instead]

 Substituting into equation (1) → k = 
1.55

0.35−1.51 = 0.32

 Alternative method: take logs of equations (1) and (2) 
and solve the resulting simultaneous equations for k 
and n.

(c) Plot a graph of ln f against ln l [or log f against log l]. 
The graph should be a straight line with a negative 
gradient. The value of n is the gradient. The intercept 
on the log f axis is the value of log k, so k = 10intercept.

23 (a) Graph of ln C against x should be plotted [units of C 
and x can remain in min−1 and cm].

 The gradient of the graph should be ~ −0.49 and the 
intercept on the ln C axis ~6.3.

 ∴1
L

 = 0.49 giving a value of L = 2.04 cm

 ln C0 = 6.3 ∴ C0 = 540 min−1

(b) 25 = 540e− 
x

2.04. ∴ − 
x

2.04
 = ln ( 25

540) →x = 6.3 cm. 

 [i.e. an additional shielding of 5.8 cm]

24 (a) A graph of ln I against ln V has a gradient of ~0.547 
and intercept of ~−0.729 on the ln I axis. These give n 
= 0.55 [2 s.f.] and k = 0.48 [2 s.f.]

(b) c = k−1 = 2.08. m = 1 − n = 0.45

25 (a) n = 
60
8

 = 7.5. ∴ A = 800 × 2−7.5 = 4.42 kBq

(b) λ = 
ln 2

8
 = 0.0866 day−1.

 ∴ A = 800e−0.0866 × 100 = 0.138 kBq = 138 Bq.

(c) (i) Gradient = − ln 2; intercept = ln A0 

  = 6.68 [with A in kBq]

 (ii) Gradient = −λ = 0.0866 day−1;
intercept = ln A0 i.e. same as in (i).

Test Yourself 5.1

➊  ➋ 

➌  ➍ 

25°65°65°
40°50° 140°130°

35°35° 40°55° 110° 70° 70° 30° 120°30°all 60°
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➎ 

➏ (a) 173 mm (b) 100 mm

➐ (a) 47.7 m (b) 62.2 m

➑ (a) 35.8 cm (b) 46.7 cm

➒ (a) 180 mm (b) 56.3°

➓  (a) 48.2° (b) 22.4 m

⓫  x = 150 m; y = 260 m

⓬  (a) height = 140 m (b) distance = 300 m

⓭  1015 m

⓮  (a) 34.8° (b) 49.3° (c) 61.0°

⓯  (a) 35.2°

(b) n2 = 1.52 is irrelevant. φ would be the same even if this 
layer were not there.

⓰  (a) n = 1.60 (b) 40.6°

⓱  n = 1.58

⓲  n = 1.39

⓳  n = 1.40

⓴  n = 1.41 [θ must be 45° and angle of incidence must be 90°]

21 (a) cos α = √1 − sin2 α = √1 − 0.82 = ±0.6

(b) tan α = 
sin α
cos α

 = 
0.8

±0.6
 = ±1.33

22 cos 2β = cos(β + β) = cos β cos β − sin β sin β = cos2 β − sin2 β 

 But sin2 β = 1 − cos2 β

 ∴ cos 2β = cos2 β − (1 − cos2 β) = 2 cos2 β − 1 QED

23 (a) cos χ = √1 − sin2 χ = ±√1 − x2 

(b) cos(180° + χ) = cos 180° cos χ − sin 180° sin χ 

 = −1 × cos χ − 0 × sin χ

 ∴ cos(180° + χ) = −cos χ = ±√1 − x2

(c) tan(360° − χ) = 
sin (360° − χ)
cos (360° − χ)

 

  = 
sin 360° cos χ − cos 360° sin χ
cos 360° cos χ + sin 360° sin χ

 cos 360° = cos 0° = 1 and sin 360° = sin 0° = 1

 ∴ tan(360° − χ) = 
−sin χ
cos χ

 = 
−x

±√1 − x2
 

  = ± 
x

√1 − x2

24 Applying the cosine rule:

 152 = 252 + 352 − 2 × 25 × 35 cos θ

 ∴ θ = 21.8°
 ∴ φ = 21.8° [alternate angles]

 ∴ y = 35 sin 21.8° = 13.0 cm

 and x = 35 cos 21.8° = 32.5 cm.

120°60°60°60° 60°60° 30°
30°30°

15 cm 25 cm35 cm y

x
φ

θ

25 First draw the triangle [not to scale].

 Applying the sine rule: 
14

sin θ
 = 

10
sin 45°

 ∴ θ = sin−1 (14 × sin 45°
10 ) = 81.87° or 98.13°

 ∴ B̂ = 180° − (θ + 45°) = 53.13° or 36.87°

 AC2 = 102 + 142 − 2 × 10 × 14 cos B ∴ AC = 11.3 cm or 8.5 cm

 Alternatively: apply the cosine rule directly: Put AC = x

 102 = 142 + x2 – 2 × 14x cos 45°

 Solve this quadratic equation for x.

26 θ = sin−1 0.5 = 16 π or 5
6 π or 

θ = sin−1 (−0.25) = −0.253 or −2.889

27 (a) θ = sin−1 (± 
2
√5)= 1.107 or −2.034. 

Note: −1.107 and +2.034 are not solutions. The process of 
squaring introduces spurious solutions

(b) θ = 0.262 rad or 0.262 − π rad = −2.880 rad.

(c) θ = ± 0.524 rad

(d) θ = 0 or ± 2.094 rad

(e) θ = ±1.57 rad or 0.252 rad

28 √2 sin α + √2 cos α

29 (a) 25 sin (α − 1.287 rad)

(b) 25 cos (α − 2.858 rad)

30 φ = −0.643 rad.

Test Yourself 6.1

Questions ➊–➓ 

12 ➊

➐

➏

➌

➎

➓

➍

➒

➑➋

y

x

8
4

4
8

48 8 124

⓫  y = 1.5x − 6

⓬  y = −0.4x + 30

10 cm
45°θ

14 cmB
A C
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⓭  V = −0.2I + 6.0

⓮  V = 4.14 × 10−15f − 0.70

⓯  v = 0.8t + 16

⓰  F = 25l − 5.0

⓱  V = −1.33I + 3.07

⓲  v = −0.2t + 26

⓳  F = 0.5l − 3

⓴  V = 5 × 10−15f − 1.5

21 V = 9.6 − 4.0I, E = 9.6 V; r = 4.0 Ω

22 k = 1.06 N cm−1, l0 = 4.42 cm

23 a = 8 m s−2; u = 11600 m s−1 [or 0.008 km s−2 and 11.6 km s−1]

24 [Gradient = 4.2 × 10−15 [V s], intercept = −0.60 [V]], leading 
to h = 6.7 × 10−34 J s and φ = 9.6 × 10−20 J [= 0.6 eV]

Test Yourself 6.2

The solutions given are the least squares ϐit solutions. For graphs 
drawn freehand, slightly different, but equally acceptable, 
answers will be obtained.

➊ Gradient −1.0 [Ω]; intercept 6.12 [V]. So emf = 6.12 V; 
internal resistance = 1.0 Ω 

➋ Gradient 0.21 [ m s−2], intercept 3.63 [m s−1]. So initial 
velocity = 3.63 m s−1; acceleration = 0.21 m s−2.

➌ Gradient 0.228 [N cm−1]; intercept −1.13 [N]. So spring 
constant = 0.228 N cm−1, unloaded length = 4.9 cm.

➍ Gradient 0.0036 [atm °C−1], intercept 0.945 [atm]; 
So p0 = 0.945 atm and absolute zero (from data) = −263 °C.

➎ Gradient −0.0469 [V mA−1]; intercept 10.5 [V]; Emf = 10.5 V; 
internal resistance = 47 Ω.

➏ The graph of √s against t is a straight line with a gradient 
1.14 and an intercept of 0.073 on the √s axis [LSF]. This is 
close enough to a zero intercept to verify the relationship. 
The acceleration is 2× gradient2 = 2.6 m s−2.

➐ Graph v2 against s. It is straight with gradient 0.562 and 
intercept 404. The acceleration a = 12 × gradient = 0.28 m s−2. 
The intercept is u2 so u = 20 m s−1.

➑ Plot f against 1/l on a restricted axis [e.g. 240 − 520 Hz and 
2.4 − 5.0 m−1]. Other possibilities are 1/f against l or the axis 
may be the other way around. Using f v 1/l the intercept on 
the f axis is 1.2 Hz [LSF] which is close to zero and hence 
consistent with the relationship. The gradient is 
c/2 = 104 [m s−1], so c = 208 m s−1.

➒ As in 6.5.2 the graph should be l against 1/f. The gradient is 
c/4 and the intercept −ε. The graph is straight with gradient 
8580 [cm s−1] and intercept −1.3 [cm] giving the speed of 
sound as 34320 cm s−1 [342 m s−1] and end correction 1.3 cm.

➓  A graph of T2 against l should be straight with a gradient 
of 4π2/g and intercept 4π2ε /g. The graph has a gradient of 
4.11 [s2 m−1] and intercept 0.082 [s2]. This gives g = 9.6 m s−2 
and ε = 2 cm.

⓫  A graph of d against 1/√R should be straight with gradient 
√k and intercept −ε. The graph has a gradient of 236 and 
an intercept on the d axis of −1.8. This gives a value for k as 
56 000 cpm cm2, and ε as 1.8 cm.

⓬  A graph of T2 against l2 should be straight with gradient 
2m
k

 and intercept 
I
k

 on the T2 axis. The graph is straight 

with gradient 5600 [s2 m−2] and intercept 28.5 [s2]. With 
m = 0.1 kg this gives a value of k of 3.6 × 10−5 kg m2 s−2 [or, 
N m rad−1] and I = 1.0 × 10−3 kg m2.

⓭  A graph of T 2y against y2 should be a straight line with 

gradient 
4π2

g
 and intercept 

4π2k2

g
 on the T 2y axis. The graph 

is a straight line of gradient 4.00 [s2 m−1] and intercept 0.76 
[s2 m] on the T 2y axis. This gives g = 9.87 kg m−2 [or N kg−1] 
and k = 0.43 m.

⓮  A graph of 
1
V

 against 
1
R

 should be straight with gradient 
r
E

 

and intercept 
1
E

 on the 
1
V

 axis. The graph is straight with 

a gradient of 0.219 [Ω V−1] and intercept 0.103 [V−1]. This 
gives a values of E as 9.7 V and r as 2.1 Ω.

⓯  A graph of 
1
v

 against 
1
u

 [or vice versa] should be a straight 

line of gradient −1 with an intercept on either axis of 
1
f
 . The 

graph has a gradient of −1.00 as predicted and an intercept 

of 0.0679 on the 
1
v

 axis, giving a value for f of 14.7 cm.

⓰  The graph of sin θ2 against sin θ1 is straight with a gradient 
of 0.803 and an intercept of 0.0014 on the sin θ2 axis, which 
is consistent with passing through the origin. Hence sin θ1 
∝ sin θ1 . The speed of light in glass is 0.803 × the speed in 
water.

 Speed of light in water = 
3.00
1.33

 × 108 m s−1. This gives the 

speed of light in glass as 1.81 × 108 m s−1.

Data Exercise 6.1

Ep minimum = −0.245, at a separation of 1.12−1.13

0.40.30.20.100.10.20.3

potential

separation

Ep minimum = 0.245, at a separation of 1.12–1.13

0 0.5 1.0 1.5 2.0 2.5 3.0
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Data Exercise 6.2

The LSF graph has a gradient of 1.31 [m s−2] and intercept 
of 0.006 [m] on the s axis. This is consistent with a constant 
acceleration of 2.6 m s−2 and initial value of s = 0.

Test Yourself 6.3

➊ 

➋ f −1 is only deϐined between x = 0 and x = 7.

➌ 

➍ (a) The function is symmetrical about x = 0 and is >0 for 
all values of x. As x → ±∞, g → +∞. The  magnitude of 
the gradient increases as |x| increases.

 (b) Minimum at (0, 0.2)

➎ (a) (i) Minimum at (0, −5)

 (ii) Points of inϐlexion at (± 
1
√5

 , − 
5
2) ; x-axis is an 

asymptote

 (iii) 

(b)

y

x

(a)

(b)

(c) (d)
(e)(f)

–5
–6

5
30

y

x–2 0 2

y = (x + 2)2
y = x2

y = x2 + (x + 2)2

V
x

x
V 2

➏ 

➐ 

➑ 
3x

x2 − x − 2
 ≡ 

2
x − 2

 + 
1

x + 1

 Point of inϐlexion at x = 
2 − 3√2

1 + 3√2
 ≈ 

1
3

x

y

PoI1 2
➒ The graph has two vertical asymptotes, at x = −d and +d. 

For x < −d the potential function is as the graphs in Qs 7 and 
8 (to the eye). For −d < x < d the potential function is the 
negative of those between the asymptotes in Qs 7 and 8. It 
passes through (0, 0) which is also the point of inϐlexion. 
For x > +d the potential function is as in Q7 and Q8 to the 
right of the + asymptote.

➓  (a) a and b are both zero and c = k. 
 The solution with N(0) = 0 is N = kt2e−λt

(b) Peak when t = 
2
λ

 Points of inϐlexion when t = 
2 ± √2

λ
 Note that the gradient is zero when t = 0.

N

t

⓫  (a) Δt = 
2π
ω

F

x

W

x

y

PoIasymptote
asymptote1 2 5
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(b) Amplitude = Ae−λt = Ae−5 ∼ 0.0067 A

(c) ν = Ae−λt [ω cos ωt − λ sin ωt]

(d) ν = A √ω2 + λ2  e−λt cos (ωt + tan−1 
λ
ω)

(e) Fractional energy loss per cycle = (1 − e−
4πλ
ω )

⓬  

⓭  The turning points are 0.079 s earlier than those of the pure 
cos 0.2 πt function.

⓮  (a) Minimum at (0,0); maximum at (–2, 
4
3)

 (b) Two other points of inϐlexion: at x = 
–3 ± √5

2

⓯  At the turning point, v = 
3√2 – 6  

2d  
.

Test Yourself 7.1

➊ (a) 18.0 km N56°W (b) 70.7 N due E

 (c) 55.9 N, N63.4°W (d) 44.7 N, S26.6°E

 (e) 91.8 N, N15.6°E 

(f) 17.3 m s−2, N60°E.

(g) 100 N, N30°E.

(h) 72.1 N, E33.7°S.

➋ 20.6 m s−1 at 14.0 ° to the horizontal.

➌ (a) Both components 7.07 N

(b) Down component = 453 N; up component = 211 N.

(c) N component = 2.74 km; W component = −7.52 km

➍ (a) F = 20 N; G = 17.3 N (b) F = 117 N; G = 110 N

➎ F = 70 N; θ = 21.8°

➏ 108 N; 21.8° below the 50 N force.

➐ (a) F = −2i − 13j 
 (b) F = 13.2 N at 8.75° to the left of the minus j direction

➑ (a) a = −28i − 4j 
 (b) a = 28.3 m s−2, W 8.1° S

➒ (a) s = 20i + 72j 
 (b) v = 10i + 32j
 (c) v = 33.5 m s−1 at 72.6° from the i vector.

➓  (a) Over 0.2 s, a– = 120 m s−2; over 0.02 s, a– = 124.9 m s−2, 
both towards centre at midpoint of the time.

(b) a = 
v2

r
 gives a = 125 m s−2 towards centre. The mean 

values approach 125 as Δt→0.

t
0
x

⓫  T = 180 N.

⓬  (a) 85.4 N (b) 58.5 m

⓭  F = mg sin θ ; C = mg cos θ (b) θmax = tan−1 0.2= 11.3° 

⓮  a = 1.51 m s−2

⓯  (a) θ = 66.9° (b) F = 230 N

⓰  (a) 40i + 10j (b) 70i − 44j
 (c) Both 20.6 knot (d) 14i − 8.8j
 (e) 16.5 knot, E 32° S

⓱  (a) 13 000 m s−1 (b) 5000i + 8400j + 7200k
 (c) 12 140 m s−1

 (d) [In km] 180 000i + 367 200j + 129 600k 

 (e) 429 000 km

⓲  (a) a = −3.7j [m s−2]; v = 30i + 3j [m s−1]; s = 300i + 215j [m]

(b) 30.1 m s−1 at 5.7° [0.1 rad] above the horizontal

(c) 50 m s−1 at 53.1° below the horizontal

(d) 3j
⓳  (a) Position = 70.6i + 70.4j, i.e. height 70.4 m and 

horizontal distance 70.6 m

 [Position from base of cliff]

 Velocity, v = 34.64i i.e. 34.64 m s−1 horizontal

(b) Position = 202 m from base of cliff; s = 202i
 Velocity, v = 34.64i − 37.2j; i.e. 50.8 m s−1 at 47.1° 

below the horizontal.

⓴  (a) p = 47j
(b) vCoM = 5.875j
(c) KE = 209J

21 (a) p = 24i – 9j
(b) vCoM = 3i – 1.125j
(c) 109.5 J

22 (a) p1 = p0 + Ft = 23i + 25j
 (b) Easiest method uses Ek = 

p2

2m
 → ΔEk = 280 J

23 (a) u = 32 i + 52 j ; a = i + j
(b) s = 65i + 75j
(c) F.s = (2i + 2j).(65i + 75j) = 130 + 150 = 280 J

 Comment: F.s is the work done by the force which is 
the change in kinetic energy, i.e. the answer agrees 
with Q22 (b)

24 F.Δs = 600 J ∴ Final KE = 1 000 J

25 (a) τ1 = 30k; τ2 = –16k
(b) –14k
(c) F3 = −4i − 4j
(d) (xi + yj) × F3 = (xi + yj) × (–4i – 4j) = (−4x + 4y)k
 This cross product must be –14k 

∴ −4x + 4y = –14, i.e. x − y = 3.5
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Test Yourself 8.1

➊ (a) 0.909 (b) −23.4 (c) 15.0

➋ (a) −5.488 rad; −0.795 rad; 0.795 rad; 5.488 rad

 (b) −2.214 rad; −0.927 rad; 4.069 rad; 5.356 rad

 (c) −3.094 rad; 1.094 rad

➌ 6.79 × 10−5 rad

➍ (a) 1 pc = 3.08 × 1013 km

(b) 1 pc = 3.25 l-y

➎ 0.015%

➏ (a) x = 10 cos 2πt

(b) x = −10 cos 2πt or x = 10 cos(2πt ± π)

(c) x = 10 sin 2πt or x = 10 cos(2πt − π2)
(d) x = 10 sin(2πt − 1.8π) or x = 10 cos(2πt − 0.3π)

 NB There are other ways of expressing these functions

➐ (a) vmax = 20π = 62.8 cm s−1; amax = 40π2 = 396 cm s−2

(b) for 6(a): vmax at −0.25 s and 0.75 s; amax at −0.5 s and 0.5 s

 for 6(b): vmax at 0.25 s and −0.75 s; amax at −1 s, 0 and 1 s

 for 6(c): vmax at −1 s, 0 and 1 s; amax at −0.25 s and 0.75 s

 for 6(d): vmax at −0.1 s and 0.9 s; amax at −0.35 s and 
0.65 s

➑ ω = √ k
m

 = √50 = 7.07 s−1; f = 
ω

2π
 = 1.125 Hz; T = 

1
f
 =0.889 s;

 A = 12 cm

➒ 

➓  x = 12 cos 7.07t; v = −85 sin 7.07t ; a = −600 cos 7.07t 

 [in cm; again there are several ways of writing these, 
e.g. v = 85 cos(7.071t + π2)]

⓫  x = 2.82 cm; v = 82.5 cm s−1; a = −141 cm s−2.

⓬  0.556 s, 0.778 s, 1.444 s and 1.667 s

⓭  K.E = 12 mv2 = 12 × 0.5 × (0.849 sin 7.071t)2 = 0.176 J

 P.E. = 12 kx2 : Extension = 
mg
k

 − 0.0187 = 0.178 m

 ∴ PE = 0.396 J

12

a/cm s 2

v/cm s 1

x/cm
t/s

t/s
t/s

85
600

0.89

⓮  (a) Max velocity = Aω = 2.0 × 10 = 20 m s−1.

  This occurs at t = 0.

 ∴ K.E (0) = 12 × 2 × 202 = 400 J. This is the maximum K.E.

(b) 

⓯  (a) −0.192 s; −0.058 s; 0.008 s; 0.142 s.

(b) −0.196 s; −0.154 s; 0.004 s; 0.046 s

⓰  (a) I = 0.12 cos 200πt

(b) (i) V = 3.71 V, (ii) I = 0.037 A, (iii) P = 0.138 W

(c) (i) Vrms = 8.49 V, (ii) Irms = 0.0849 A, (iii) 〈P〉 = 0.720 W.

⓱  (a) (i) XC = 
1

ωC
 = 159 Ω, (ii) I0 = 

V0

XC
 = 0.075 A

(b) I = 0.075 cos(200πt + π2)
(c) I = −0.071 A

⓲  (a) I = 0.191 cos(200πt − π2)
(b) I = 0.182 A

⓳  (a) (i) Z = √1002 + 1592 = 188 Ω,

  (ii) I0 = 0.064 A,

  (iii) VR = 6.4 V; VC = 10.2 V 

(b) V = √10.22 + 6.42 = 12 V

I = 0.064 A
ω = 200 π s 1

VR = 6.4 V
V

VC = 10.2 V
(c) θ = tan−1 (10.2

6.4 ) = 1.01 rad

⓴  (a) X is a resistor because V is in phase with I; Y is a 
capacitor because I leads V by 90°.

(b) R = 
VR

I
 = 

12
2 × 10−3 = 6 kΩ; 

1
ωC

 = 
VC

I
 

 ∴ C = 
I

ωVC
 = 

2 × 10−3

500 × 6
 = 0.67 μF/670 nF

(c) Applied voltage = √122 + 62 = 13.4 V.; 

 angle = 0.464 rad (= 26.6°)

400

Ek/ J

t

t

t

400

400

EP/ J

ET/ J

T 2T
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21 (a) VX is unchanged at 12 V because resistance is constant.
 VY is halved to 3 V because capacitor reactance is 

inversely proportional to frequency.

I = 2 mAVX = 12 V
VY = 3 V

(b) V =12.4 V; φ = 0.245 rad (14.0°)

22 Method: XC = 
1

250 × 0.67 × 10−6 = 6000 Ω

 Z = √R2 + X2 = √62 + 62 = 8.49 kΩ

 ∴ I = 1.58 mA

 ∴ VR = 9.48 V; VC = 9.48 V; V = 13.4 V

1.58 mA
VR = 9.48 V

VC = 9.48 V 13.4 V
23 (a) Method: VR = IR = 0.1 × 470 = 47 V;

 VC = 
1

ωC
 = 

0.1
500 × 2.5 × 10−6 = 80 V

 VL = IωL = 0.1 × 500 × 2.4 = 120 V.

VR = 47 V
VC = 80 V

VL = 120 V
VL  VC

(b) V = √472 + (120 − 80)2 = 61.7 V

(c) 〈P〉 = I2R [rms current] = 0.12 × 470 = 4.7 W

 [or VRI = 47 × 0.1 = 4.7 W]

24 Method: XL = ωL = 2π × 100 × 2.4 = 1510 Ω

 XC = 
1

ωC
 = 

1
2π × 100 × 2.5 × 10−6 = 637 Ω.

 Z = √R2 + (XL − XC)2 = √4702 + 8732 = 991 Ω

R = 470 Ω

XL = 1510 Ω
XL  XC = 873 Ω Z

XC = 637 Ω
 ∴ I = 

V
Z

 = 
40

991
 = 0.040 A

25 (a) ω = 1

√LC
 = 1

√2.4 × 2.5 × 10−6
 = 408 s−1. ∴ f = 

ω
2π

 = 65.0 Hz

(b) The reactances of the inductor and capacitor are equal 
and opposite, so Z = R.

 ∴ I = 
V
R

 = 
50

470
 = 0.106 A.

(c) VR = 50 V; VL = IωL= 0.106 × 408 × 2.4 = 104 V; 

 VC = VL = 104 V

 [Alternatively calculate VC using VC = 
I

ωC
 ]

(d) Only the resistor dissipates power,

 so 〈P〉 = Irms
2R = 0.1062 × 470 = 5.3 W

Test Yourself 9.1

➊ E = 3 kV m−1 downwards [or 3 kN C−1]

➋ E = 980 V m−1 upwards

➌ 9.0 × 1024 kg

➍ 40 000 km from the Moon on the line joining the centres of 
the Earth and Moon.

➎ VG = − 1.13 × 106 J kg−1

➏ Acceleration due to Sun = 2.4 × acceleration due to Earth

 [NB This means that the Moon’s path is always concave to 
the Sun]

➐ 1.0 × 106 m s−1 at 10.0° to original direction [0.174 rad]

➑ 4.5 MV m−1

➒ 450 kV

➓  22 pF

⓫  If the sphere carries a charge, Q, the potential, V = 
1

4πε0
 
Q
a

 .

 ∴ 
Q
V

 = C = 4πe0a

⓬  Field is radial, so at right angles to the curved surface of an 
imaginary concentric cylinder.

 ∴ Flux emerging from cylinder = E2πrl = 
Q
ε0

 Q = 3 × 10−6 l. ∴ E2π × 0.1l = 
3 × 10−6l

8.854 × 10−12 , 

 leading to E = 540 kV m−1.

⓭  2.4 μC m−2
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⓮  Method: Use vector equilibrium to ϐind the horizontal force 
on each sphere [0.253 mN]

 Then use F = 
1

4πε0
 
QQ
r2  → Q = 16.8 nC

⓯  (a) E due to each = 60 500 V m−1 in opposite directions.

(b) Resultant ϐield = 0

⓰  V = 3024 + 3024 = 6050 V

⓱  W = 
1

4πε0
 
Q1Q2

d2  = 9 × 109 × 
(16.8 × 10−9)2

0.1
 

  = 2.54 × 10−5 J ~ 25 μJ

⓲  Electrical potential energy 10 cm apart = 2.54 × 10−5 J

 ∴ Electrical PE 5 cm apart = 5.08 × 10−5 J

 ∴ Loss in electrical PE = 2.54 × 10−5 J

 Gain in height between the two positions = 0.48 cm [needs 
calculating]

 ∴ Gain in gravitational potential energy = mgΔh = 9.4 × 10−6 J

 ∴ Loss in PE = 2.54 × 10−5 − 9.4 × 10−6 J = 1.60 × 10−5 J

 Using KE = 12 mv2 we get v = 0.4 m s−1.

⓳  (a) 121 000 V m−1 (b) 0

⓴  (a) 5.95 × 1024 kg  (b) 9.78 N kg−1 [Both correct to 2 s.f.]

21 Total mass within outer core boundary = 1.98 × 1024 kg

 This gives g = 10.8 N kg−1

 The uniform density value would be 
3500
6370

 × 9.8 = 5.4 N kg−1,

 i.e. true value ~ 2× uniform density value.

22 (a) acceleration = 8.8 × 1012 m s−2

(b) radius of circle = 1.14 mm

(c) 14 MHz

23 The force due to the magnetic ϐield provides the centripetal 
force.

 ∴ 
mv2

r
 = Bqv. ∴ ω = 

v
r

 = 
Bq
v

 . 

 ∴ f = 
Bq

2πm
 , which is independent of the speed.

 For a proton with m = 1.67 × 10−27 kg, f = 460 Hz.

24 Peak current = I0 × √2 = 28.3 A.

 Fmax = BIℓ cos θ = 5 × 10−5 × 28.3 cos 60° = 0.7 mN; f = 50 Hz 
∴ ω = 100π

 ∴ F / mN = 0.7 cos (100πt + ε)

25 Algebraically, induced emf Ɛin = 
Δ(NΦ)

t
 = Bℓv

 ∴ I = 
Bℓv

R
 . So the motor force, BIℓ = 

B2ℓ2v
R

 . 

 ∴ The work done per second, P = 
B2ℓ2v2

R

 The electrical power P = I2R = (Bℓv
R )2

R = 
B2ℓ2v2

R
 , which is the 

same.

 Numerically in Example G, both powers are 0.05 W.

Data Exercise 10.1

x1 = 2.0; y1 = 14.0

x2 y2 Δx Δy Δy
Δx

3.0 29.00 1.0 15 15

2.5 20.75 0.5 6.75 13.5

2.1 15.23 0.1 1.23 12.3

2.05 14.6075 0.05 0.6075 12.15

2.01 14.1203 0.01 0.1203 12.03

2.005 14.06008 0.005 0.060075 12.015

2.001 14.012 0.001 0.012003 12.003

 As Δx → 0, 
Δy
Δx

 appears to tend to 12. This is conϐirmed by 

the fact that if Δx = −0.001, 
Δy
Δx

 = 11.997.

Data Exercise 10.3

No. of 
strips

Lower 
area (AL)

Upper 
area (AU)

10 6.84 9.24

20 7.41 8.61

100 7.88 8.12

200 7.94 8.06

1000 7.988 8.012

Test Yourself 10.1

➊ 
dy
dx

 = 75x2 = 168.75  ➋ 
dx
dt

 = 15 cos t = −15

➌ 
dN
dt

 = 600et = 989 ➍ 
dy
dx

 = 
6.0

t
 = 1.0

➎ 
dy
dx

 = 8 + 6t = 23  ➏ 
dx
dt

 = −3 sin t + 8 cos t = −3.00

➐ 
dy
dx

 = 6x2 + 3ex = 26.9 ➑ 
dx
dt

 = 
10
t

 – 
1.5
√t  

= 1.75

➒ 
dy
dx

 = 10x2(x2 − 3)  ➓  
dy
dx

 = 3x2 + 6x − 5

⓫  
dy
dx

 = x(2 + x)ex ⓬  
dy
dx

 = 6t sin t + 3t2 cos t

⓭  
dy
dx

 = 
−2

(x − 1)2 ⓮  
dy
dx

 = 
x2 − 4x − 7

(x − 2)2

⓯  
dx
dt

 = 
2t3(4 cos t + t sin t)

cos2 t
 ⓰  

dy
dx

 = 
1 − 2 ln x

x3

⓱  (b) 
df
dg

 = 3g2 = 3(x2 + 2)2; 
dg
dx

 = 2x

 (c) 
dy
dx

 = 3(x2 + 2)22x = 6x5 + 24x3 + 24x

 Check: f = (x2 + 2)3 = x6 + 6x4 + 12x2 + 8

 ∴ 
df
dx

 = 6x5 + 24x3 + 24x QED.
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⓲  x⋅ = 75 cos 3t ⓳  v⋅ = −31 400 sin (314t − π4)
⓴  

dN
dt

 = −1.0 × 1011e−0.1t 21 
dQ
dt

 = − 15 e−t/25

22 
dV
dR

 = 
Er

(R + r)2 . When R = 0, gradient = 
dV
dR

 = 
E
r

23 (a) 
dQ
dt

 = − 
Q0

RC
 e−t/RC

 (b) 
dQ
dt

 = −0.0092

 (c) (−)9.2 mA

24 EIN = BAN ω cos ωt = 62.8 cos 100πt.

 ∴ Peak voltage = 62.8 V

 Period: 100πT = 2π ∴ T = 0.02 s = 20 ms

62.8emf/ V
time/ms20 40

25 (a) v = Aω cos(ωt + π4) [= 60 cos(6t + π4)]
(b) a = −Aω2 sin(ωt + π4) [= −360 sin(6t + π4)]
(c) See graphs

(d) 0.36 N

0.1

a/cm s 2

v/cm s 1

x/m
t/s

t/s
t/s

60
360

T/8 = 0.13 s
π/3 = 1.05 s

Test Yourself 10.2

➊ f(x) = 
25
6

 x6  ➋ f(x) = − 
6
x2 + 8

➌ f(t) = 2t2 + t + 4 ➍ f(t) = −500e−0.005t

➎ f(t) = −2 cos 2.5t + 8 sin 1.25t

➏ [2x3]4

2
 = 128 − 16 = 112

➐ [−2.5e−2t]0.5

0
 = 1.58

➑ [10 ln x]5

1
 = 16.1

➒ [2
π

 sin πt + 2x]2

0

 = 4

➓  [−x−3]∞

1
 = 1

⓫  [k = 5000] W = 5493 J ⓬  [k = 792.4] W = 4445 J

⓭  [k = 2.048 × 1017 N m2]. W = ∫
r2

r1

 
k
r2 dr = [− 

k
r

 ]r2

r1

 = k(1
r1

 − 
1
r2

) 

  =1.5 × 1010 J

⓮  W = ∫
r2

r1

 
GMm

x2  dx = [− 
GMm

x
 ]r2

r1

 = GMm(1
r1

 − 
1
r2

)
⓯  W = − 

GMm
a

⓰  VG = − 
GM
a

⓱  VE = 
1
q

 ∫
a

∞
 − 

Qq
4πε0x2 dx = 

Q
4πε0

 [1
x]a

∞
 = 

Q
4πε0a

⓲  Potential energy at a ∫
a

∞ 
Qd

2πε0x3 dx = [− 
Qd

4πε0x2]a

∞
 = − 

Qd
4πε0a2

 ∴ KE at a = 
Qd

4πε0a2 ∴ v = √ Qd
2πε0ma2

⓳  (a) N0 = ∫
∞

0
Ae−λt = 

A0

λ
 (b) N0 = 1.75 × 1016.

⓴  (a) 
dQ
dt

 = −I0e−t/RC , ∴ Q = ∫(−I0e−t/RC)dt = I0RCe−t/RC + c

 Putting Q = 0 when t = ∞ → c = 0, i.e. Q = I0RCe−t/RC

(b) Q0 = I0RC (c) Q(200) = 68 mC.

21 (a) Substituting (0, h) into F = a − bt2 → h = a.

 Substituting (λ, 0) into F = a − bt2

→ 0 = a − bλ2 = h − bλ2 (from above)

 ∴ b = 
h
λ2 ∴ F = h − 

h
λ2 t2 = h(1 − 

t2

λ2) QED

(b) Δp = 
4λh

3
 (c) h = 5740 N

22 (a) x = ∫25e−0.02t dt = −1250e−0.02t + c; Applying initial 
conditions gives x = 1250(1 − e−0.02t).

(b) D = x at t = ∞; ∴ D = 1250 m

(c) v = 25 − 
x

50

23 (a) ΔM = 
Δx
l

 M

 (b) ΔEk = 
1
2

 
Mω2

l
 x2Δx

(c) Ek = ∫
l

0
 
1
2

 
Mω2

l
 x2 dx = 16 Ml2ω2

(d) I = 13 Ml2
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24 Dividing by the 12ω2 term from the start: 

 I = ∫
l/2

−l/2
 
M
l

 x2 dx = 1
12 Ml2 

25 (a) Area of ring = 2πrΔr. 

  ∴ Mass of ring, ΔM = 
2πrΔr

πa2  M = 
2rΔr

a2  M

(b) ΔEk = 
Mr3ω2Δr

a2  , so Ek = 
Mω2

a2  ∫
a

0
r3dr = 14 Ma2ω2

(c) I = 12 Ma2

Test Yourself 11.1

➊ v = 10e−5t ➋ N = 1 × 106e−0.001t 

➌ I / μA = 6e−0.2t  ➍ x = 5 sin 8t

➎ x = 0.1 cos 5t ➏ h = 50e−0.02t

➐ V = 9e−0.097t

➑ y = 0.224 cos(10t − 1.11) or y = 0.224 sin(10t + 0.46)

➒ Q / μC = 0.2 sin 500t  ➓  Q / mC = 47 cos 100t
    ∴ T = 0.0628 s

⓫  v = 50 − 30e−0.1t

⓬  N = 
R
λ

 (1 − e−λt)

⓭  V = 16e−0.3t + 24

⓮  I = 0.5 sin 13t + 1.2 sin 12t

⓯  x = 0.2(1 − cos 10t)

⓰  v = 12.5(1 − e−0.4t) + 5t

⓱  v = 0.206e−12t + 0.443 sin(2πt – 0.482)

⓲  N = 2 × 107(e−0.2t − e−0.1t)

⓳  NB = 1 × 1015(e−0.05t − e−0.125t)
 
with t in days. 

 ∴ NB (20 days) = 2.9 × 1014

⓴  x / m = 0.1 cos 2.5t

21 x = 2.0e−2t cos 9.80t

22 (a) 
d2x
dt2 + 4 

dx
dt

 + 9x = 0 (b) x = −0.15e−2t cos √5t 

23 (a) k = 0.1; p = π, i.e. 3.1420; ω = 3.1420

 
d2x
dt2 + 0.1 

dx
dt

 + 9.872x = 0

(b) x = 0.615e−0.05t sin πt

(c) 0.00026 s
 [without damping the period would be 1.99974 s]

24 (a) L 
dI
dt

 + IR = V0 cos ωt or 
dI
dt

 + I 
R
L

 = 
V0

L
 cos ωt

(b) Phase difference, ε = tan−1 (ωL
R )

(c) V0 = I0√ω2L2 + R2

25 (a) If L 
dI
dt

 + IR + 
Q
C

 = V0 cos ψt, 

  differentiating → L 
d2I
dt2 + R 

dI
dt

 + 
I
C

 = −V0ψ sin ψt

 Look for a CF of the form I = I0 cos(ψt + ε)

 Substituting into the differential equation gives:

 −V0ψ sin ψt = −I0Lψ2 cos(ψt + ε) − I0Rψ sin(ψt + ε) 

      + 
I0

C
 cos(ψt + ε)

 ∴ −V0 sin ψt = I0[ 1
ψC

 − ψL] cos(ψt + ε) − I0R sin(ψt + ε)

 To ϐind the values of I0 and ε, consider substitute the 
following values of t:

 t = 0: 0 = [ 1
ψC

 − ψL] cos ε − R sin ε [dividing by I0]

 ∴ tan ε = 

1
ψC − ψL

R

 ∴ sin ε = 

1
ψC − ψL

√R2 + ( 1
ψC

 − ψL)2
 and cos ε = 

R

√R2 + ( 1
ψC

 − ψL)2

 ψt = π2  −V0 = −I0[ 1
ψC

 − ψL] sin ε − I0R cos ε

 ∴ V0 = I0 {[ 1
ψC

 − ψL] 
1

ψC − ψL

√R2 + ( 1
ψC

 − ψL)2
  + R 

R

√R2 + ( 1
ψC

 − ψL)2}
 ∴ = I0 { R2 + ( 1

ψC − ψL)2

√R2 + ( 1
ψC

 − ψL)2} = I0 √R2 + ( 1
ψC

 − ψL)2
 QED

(b) V0 = I0√R2 + (ψL − 
1

ψC)2
. 

 ∴ I0 is maximum when ψL − 
1

ψC
 = 0

 ∴ ψ2 = 
1

LC
 ∴ ψ = 

1
√LC

 ∴ fR = 
1

2π√LC

Test Yourself 12.1

➊ (a) 3i; −3i (b) −4 + 5i

(c) (i) 1 (ii) i (iii) −1 (iv) −i

(d) (i) 1 (ii) −1 (iii) −i (iv) i

(e) (i) 0 (ii) 1 (iii) −1

➋ (a) Re (z*) = 4 (b) Im (z*) = 3 (c) Re (iz) = −3 
(d) Im (iz) = 4

➌ (a) x = 3 + 2i and 3 − 2i

(b) −3 + 2i and −3 − 2i respectively

(c) x2 + 6x + 13 = 0

➍ 2i
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➎ (a) 13i (b) i (c) − 12 + √3
2  i 

(d) (a2 − b2) + 2abi

➏ (a) 5 (b) 4
25 − 3

25 i (c) 1
25 √32 + 42 = 15 

(d) 1
5

➐ (a) i (b) 1
2(√3 + 1) + 12(√3 − 1)i

➑ (a) (i) √3 + i (ii) 2 + 2√3i (iii) −2 + 2√3i  
(iv) −4 − 4√3i

(b) (i) √2ei 
π
4 (ii) √2ei 

3π
4  (iii) √2e−i 

3π
4  

(iv) √2e−i 
π
4

 (v) 2e−i 
π
6 (vi) 2e−i 

5π
6

➒ (a) 8ei 
π
2 = 8i (b) 1

2e−i 
π
6

 (c) √2ei π4 × 2e−i π6 = 2√2ei  π
12 (d) 

√2ei π4

√2e−i π4
 × = ei 

π
2 = i

➓  sin (A + B) + sin (A − B)

⓫  cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ

⓬  (a) √−8 = −2i, 2ei 
π
3, 2e−i 

π
3 (b) 2, 1 + √3i, 1 − √3i

Test Yourself 12.2

➊ (a) z1 = Aei (ωt + π2) = Aeiωt ei 
π
2 = Aieiωt;

 z2 = 3Aei (ωt + π) = 3Aeiωt eiπ = −3Aeiωt

(b) (z1 + z2) = Aeiωt(−3 + i) = Aeiωt √10eiφ

 where φ = cos−1 (− 
3

√10) = 0.898π [= 2.820 rad]

(c) (x1 + x2) = √10A cos {ωt + 0.898π}

➋ (a) Using Newton’s 2nd law in basic SI units the 
differential equation is:

 1.50 
d2x
dt2 = −3.6 

dx
dt

 − 96x

 which reduces to 
d2x
dt2 + k 

dx
dt

 + ω0
2 = 0,

  where ω0 = √96
1.5

 = √64 = 8.0 s−1 and k = 
3.6
1.5

 = 2.4 s−1

(b) λ2 + 2.4λ + 64 = 0 

 ∴ λ = −2.4 ± √2.42 − 4 × 64
2

 = −1.2 ± 7.91i

 ∴ Re (λ) = −1.2; Im (λ) = ± 7.91

(c) ω1 = 7.91, ∴ T = 
2π
ω1

 = 0.79 s (2 s.f.)

(d) If e−1.2t = 0.05;  t = 
ln 0.05

−1.2
 = 2.5 s (2 s.f.) = 3.1T.

 So 3 complete cycles.

➌ (a) (i) ZS = R − iXC = R − 
i

ωC

 (ii) ZP = 
R(iXC)
R − iXC

 = 
R

1 + (ωCR)2
 [1 − iωCR]

(b) (i) ZS = R − iR = R√2e−i 
π
4

 (ii) ZP = 
R
2

 [1 − i] = 
R
√2

 e−i 
π
4

(c) 
IS

IP

 = 
ZP

ZS

 = 
1
2

 ; Phases the same [leading the pd by π4]

➍ (a) (i) Z = R + i(ωL − 
1

ωC)
 (ii) Z = √R2 + (ωL − 

1
ωC)2

(b) The minimum value of Z is when (ωL − 
1

ωC) = 0, 

 ∴ ω0L = 
1

ω0C
 , ∴ ω0 = 

1
√LC

 At this frequency Z = √R2 + 0 = √R2 = R

(c) 
peak pd across L
peak pd across R

 = 
Iω0L

IR
 = 

ω0L
R

(d) If √2R = √R2 + (ωL − 
1

ωC)2

, then 2R2 = R2 + (ωL − 
1

ωC)2

 ∴ (ωL − 
1

ωC)2

 = R2, so ωL − 
1

ωC
 = ±R QED

(e) ω1L − 
1

ω1C
 = −R and ω2L − 

1
ω2C

 = +R

 (i) ∴ adding: (ω1 + ω2)L − 
ω1 + ω2

ω1 ω2 C
 = 0, 

   i.e. (ω1 + ω2)[L − 
1

ω1 ω2 C] = 0

  ∴ L − 
1

ω1 ω2 C
 = 0 leading to ω1 ω2 = 

1
LC

 = ω0
2

  (ii) and subtracting (ω2 − ω1)L + 
ω2 − ω1

ω1 ω2 C
 = 2R.

  but ω1 ω2 = 
1

LC
 so 2L(ω2 − ω1) = 2R

  So 
ω2 − ω1

ω0
 = 

R
ω0L

 = 
1
Q

(f) From (e)(ii) Q is inversely proportional to the 
fractional difference of the half power points related to 
the resonant frequency. So the sharper the resonance 
peak, the greater the value of Q.
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